Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320341529> ?p ?o ?g. }
- W4320341529 endingPage "112040" @default.
- W4320341529 startingPage "112040" @default.
- W4320341529 abstract "Bimodal structures (BS) receive wide concern due to their enhanced combination between strength and ductility. However, it is generally time-consuming and labor-intensive to obtain adequate performance data through traditional experimental and simulation methods. In this paper, a small-sample machine learning (ML) model combined with crystal plasticity (CP) simulations is developed to predict mechanical properties for BS materials with different microstructures. The proposed ML model shows better prediction capacities with regard to yield strength and uniform elongation among traditional ML models, which are validated by both simulative and experimental data. Afterwards, the Pareto front for BS is obtained by multi-objective optimization algorithm (MOOA), showing the mechanical properties of BS with optimal microstructures are much better than those of homogenous structures with the uniform grain size. To realize personalized customization for different target performance, the Pareto front is divided into three parts, then the corresponding three-dimensional design diagrams are established to seek for the best strength and elongation. The proposed exploration framework integrates finite element simulation, ML and MOOA, which can identify the optimized design of heterogeneous structures (HS) using limited data." @default.
- W4320341529 created "2023-02-13" @default.
- W4320341529 creator A5016356589 @default.
- W4320341529 creator A5018504335 @default.
- W4320341529 creator A5019165982 @default.
- W4320341529 creator A5027213805 @default.
- W4320341529 creator A5064222660 @default.
- W4320341529 creator A5067271421 @default.
- W4320341529 creator A5076602309 @default.
- W4320341529 date "2023-03-01" @default.
- W4320341529 modified "2023-10-15" @default.
- W4320341529 title "Application of machine learning in the design and optimization of bimodal structural materials" @default.
- W4320341529 cites W1202994963 @default.
- W4320341529 cites W1764013687 @default.
- W4320341529 cites W1964934185 @default.
- W4320341529 cites W1968394874 @default.
- W4320341529 cites W1971787748 @default.
- W4320341529 cites W1982651196 @default.
- W4320341529 cites W1983131404 @default.
- W4320341529 cites W1983362712 @default.
- W4320341529 cites W1989296234 @default.
- W4320341529 cites W1989933469 @default.
- W4320341529 cites W2001842910 @default.
- W4320341529 cites W2001979953 @default.
- W4320341529 cites W2037009372 @default.
- W4320341529 cites W2051821221 @default.
- W4320341529 cites W2069416742 @default.
- W4320341529 cites W2080017836 @default.
- W4320341529 cites W2084732626 @default.
- W4320341529 cites W2091863687 @default.
- W4320341529 cites W2114493992 @default.
- W4320341529 cites W2148156546 @default.
- W4320341529 cites W2161336914 @default.
- W4320341529 cites W2167025280 @default.
- W4320341529 cites W2342354447 @default.
- W4320341529 cites W2507986226 @default.
- W4320341529 cites W2514336101 @default.
- W4320341529 cites W2538667137 @default.
- W4320341529 cites W2567832761 @default.
- W4320341529 cites W2575635117 @default.
- W4320341529 cites W2605315194 @default.
- W4320341529 cites W2729925435 @default.
- W4320341529 cites W2759261664 @default.
- W4320341529 cites W2760535917 @default.
- W4320341529 cites W2765684132 @default.
- W4320341529 cites W2768601685 @default.
- W4320341529 cites W2771628913 @default.
- W4320341529 cites W2795341196 @default.
- W4320341529 cites W2803116244 @default.
- W4320341529 cites W2884430236 @default.
- W4320341529 cites W2890914297 @default.
- W4320341529 cites W2896115204 @default.
- W4320341529 cites W2899449085 @default.
- W4320341529 cites W2904396188 @default.
- W4320341529 cites W2910460562 @default.
- W4320341529 cites W2912708417 @default.
- W4320341529 cites W2914632442 @default.
- W4320341529 cites W2917386396 @default.
- W4320341529 cites W2947142650 @default.
- W4320341529 cites W2948718130 @default.
- W4320341529 cites W2963698634 @default.
- W4320341529 cites W2964763564 @default.
- W4320341529 cites W2969389191 @default.
- W4320341529 cites W2978775852 @default.
- W4320341529 cites W2980664556 @default.
- W4320341529 cites W2991341287 @default.
- W4320341529 cites W3000626214 @default.
- W4320341529 cites W3007681970 @default.
- W4320341529 cites W3008647172 @default.
- W4320341529 cites W3038793688 @default.
- W4320341529 cites W3082108357 @default.
- W4320341529 cites W3111513978 @default.
- W4320341529 doi "https://doi.org/10.1016/j.commatsci.2023.112040" @default.
- W4320341529 hasPublicationYear "2023" @default.
- W4320341529 type Work @default.
- W4320341529 citedByCount "1" @default.
- W4320341529 countsByYear W43203415292023 @default.
- W4320341529 crossrefType "journal-article" @default.
- W4320341529 hasAuthorship W4320341529A5016356589 @default.
- W4320341529 hasAuthorship W4320341529A5018504335 @default.
- W4320341529 hasAuthorship W4320341529A5019165982 @default.
- W4320341529 hasAuthorship W4320341529A5027213805 @default.
- W4320341529 hasAuthorship W4320341529A5064222660 @default.
- W4320341529 hasAuthorship W4320341529A5067271421 @default.
- W4320341529 hasAuthorship W4320341529A5076602309 @default.
- W4320341529 hasConcept C105795698 @default.
- W4320341529 hasConcept C112950240 @default.
- W4320341529 hasConcept C119857082 @default.
- W4320341529 hasConcept C127413603 @default.
- W4320341529 hasConcept C135628077 @default.
- W4320341529 hasConcept C136764020 @default.
- W4320341529 hasConcept C149912024 @default.
- W4320341529 hasConcept C159985019 @default.
- W4320341529 hasConcept C183003079 @default.
- W4320341529 hasConcept C192562407 @default.
- W4320341529 hasConcept C2776512210 @default.
- W4320341529 hasConcept C33923547 @default.
- W4320341529 hasConcept C33947775 @default.