Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320341557> ?p ?o ?g. }
- W4320341557 endingPage "127425" @default.
- W4320341557 startingPage "127425" @default.
- W4320341557 abstract "Engine spray models based on phase equilibrium have made great progress in simulating trans/supercritical engine spray processes, but there are inherent weaknesses in terms of efficiency and stability for the conventional phase equilibrium algorithm due to the iterative schemes for solving complex nonlinear equations. The low efficiency of the conventional algorithm limits the amount of detail that can be considered in the simulation, while the instability may lead to unphysical results or even simulation divergence. In this work, a method based on artificial neural networks (ANNs) was developed as a potential alternative to the conventional algorithm applied in the engine spray models to achieve fast and robust phase equilibrium calculations. Three ANNs were constructed, including isothermal-isobaric-ANN (TPn-ANN), isenthalpic-isobaric-ANN (HPn-ANN) and adiabatic-mixing-temperature-ANN (AMT-ANN). The latter two models combined with TPN-ANN can be applied to heat and mass transfer flow and adiabatic mixing problems, respectively, to achieve the prediction of phase equilibrium temperature, phase stability and phase splitting. The current work shows that the ANN method leads to significant efficiency improvements while maintaining almost the same accuracy as the conventional algorithm. Analysis of execution time for a high-fidelity n-dodecane spray simulation shows that the conventional phase equilibrium calculation can take up to 70% of total computational time, which can be reduced to negligible levels with the current proposed ANN approach." @default.
- W4320341557 created "2023-02-13" @default.
- W4320341557 creator A5010444377 @default.
- W4320341557 creator A5029322489 @default.
- W4320341557 creator A5052220949 @default.
- W4320341557 creator A5052929947 @default.
- W4320341557 creator A5055610449 @default.
- W4320341557 creator A5065939686 @default.
- W4320341557 creator A5086341561 @default.
- W4320341557 date "2023-05-01" @default.
- W4320341557 modified "2023-10-16" @default.
- W4320341557 title "Artificial neural network models for phase equilibrium predictions under engine trans/supercritical spray conditions" @default.
- W4320341557 cites W1965243797 @default.
- W4320341557 cites W1970080634 @default.
- W4320341557 cites W2011613419 @default.
- W4320341557 cites W2011616343 @default.
- W4320341557 cites W2016092658 @default.
- W4320341557 cites W2017612099 @default.
- W4320341557 cites W2028139291 @default.
- W4320341557 cites W2029310239 @default.
- W4320341557 cites W2036877531 @default.
- W4320341557 cites W2058123815 @default.
- W4320341557 cites W2065970126 @default.
- W4320341557 cites W2071414157 @default.
- W4320341557 cites W2075878583 @default.
- W4320341557 cites W2093938684 @default.
- W4320341557 cites W2094818470 @default.
- W4320341557 cites W2129288307 @default.
- W4320341557 cites W2312217977 @default.
- W4320341557 cites W2317389141 @default.
- W4320341557 cites W2571689083 @default.
- W4320341557 cites W2620801090 @default.
- W4320341557 cites W2767325365 @default.
- W4320341557 cites W2773673993 @default.
- W4320341557 cites W2896210167 @default.
- W4320341557 cites W2900435968 @default.
- W4320341557 cites W2911033506 @default.
- W4320341557 cites W3002775900 @default.
- W4320341557 cites W3047587429 @default.
- W4320341557 cites W3082364441 @default.
- W4320341557 cites W3084477567 @default.
- W4320341557 cites W3096790590 @default.
- W4320341557 cites W3132375235 @default.
- W4320341557 cites W3199370031 @default.
- W4320341557 cites W4220703750 @default.
- W4320341557 doi "https://doi.org/10.1016/j.fuel.2023.127425" @default.
- W4320341557 hasPublicationYear "2023" @default.
- W4320341557 type Work @default.
- W4320341557 citedByCount "2" @default.
- W4320341557 countsByYear W43203415572023 @default.
- W4320341557 crossrefType "journal-article" @default.
- W4320341557 hasAuthorship W4320341557A5010444377 @default.
- W4320341557 hasAuthorship W4320341557A5029322489 @default.
- W4320341557 hasAuthorship W4320341557A5052220949 @default.
- W4320341557 hasAuthorship W4320341557A5052929947 @default.
- W4320341557 hasAuthorship W4320341557A5055610449 @default.
- W4320341557 hasAuthorship W4320341557A5065939686 @default.
- W4320341557 hasAuthorship W4320341557A5086341561 @default.
- W4320341557 hasConcept C109663097 @default.
- W4320341557 hasConcept C11413529 @default.
- W4320341557 hasConcept C118419359 @default.
- W4320341557 hasConcept C121332964 @default.
- W4320341557 hasConcept C133347239 @default.
- W4320341557 hasConcept C138777275 @default.
- W4320341557 hasConcept C146211579 @default.
- W4320341557 hasConcept C154945302 @default.
- W4320341557 hasConcept C158622935 @default.
- W4320341557 hasConcept C2775924081 @default.
- W4320341557 hasConcept C28826006 @default.
- W4320341557 hasConcept C33923547 @default.
- W4320341557 hasConcept C41008148 @default.
- W4320341557 hasConcept C47446073 @default.
- W4320341557 hasConcept C50644808 @default.
- W4320341557 hasConcept C62520636 @default.
- W4320341557 hasConcept C97355855 @default.
- W4320341557 hasConceptScore W4320341557C109663097 @default.
- W4320341557 hasConceptScore W4320341557C11413529 @default.
- W4320341557 hasConceptScore W4320341557C118419359 @default.
- W4320341557 hasConceptScore W4320341557C121332964 @default.
- W4320341557 hasConceptScore W4320341557C133347239 @default.
- W4320341557 hasConceptScore W4320341557C138777275 @default.
- W4320341557 hasConceptScore W4320341557C146211579 @default.
- W4320341557 hasConceptScore W4320341557C154945302 @default.
- W4320341557 hasConceptScore W4320341557C158622935 @default.
- W4320341557 hasConceptScore W4320341557C2775924081 @default.
- W4320341557 hasConceptScore W4320341557C28826006 @default.
- W4320341557 hasConceptScore W4320341557C33923547 @default.
- W4320341557 hasConceptScore W4320341557C41008148 @default.
- W4320341557 hasConceptScore W4320341557C47446073 @default.
- W4320341557 hasConceptScore W4320341557C50644808 @default.
- W4320341557 hasConceptScore W4320341557C62520636 @default.
- W4320341557 hasConceptScore W4320341557C97355855 @default.
- W4320341557 hasFunder F4320321001 @default.
- W4320341557 hasLocation W43203415571 @default.
- W4320341557 hasOpenAccess W4320341557 @default.
- W4320341557 hasPrimaryLocation W43203415571 @default.
- W4320341557 hasRelatedWork W1133059997 @default.
- W4320341557 hasRelatedWork W118994162 @default.