Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320342857> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W4320342857 abstract "A large number of modern applications ranging from listening songs online and browsing the Web to using a navigation app on a smartphone generate a plethora of user trails. Clustering such trails into groups with a common sequence pattern can reveal significant structure in human behavior that can lead to improving user experience through better recommendations, and even prevent suicides [LMCR14]. One approach to modeling this problem mathematically is as a mixture of Markov chains. Recently, Gupta, Kumar and Vassilvitski [GKV16] introduced an algorithm (GKV-SVD) based on the singular value decomposition (SVD) that under certain conditions can perfectly recover a mixture of L chains on n states, given only the distribution of trails of length 3 (3-trail). In this work we contribute to the problem of unmixing Markov chains by highlighting and addressing two important constraints of the GKV-SVD algorithm [GKV16]: some chains in the mixture may not even be weakly connected, and secondly in practice one does not know beforehand the true number of chains. We resolve these issues in the Gupta et al. paper [GKV16]. Specifically, we propose an algebraic criterion that enables us to choose a value of L efficiently that avoids overfitting. Furthermore, we design a reconstruction algorithm that outputs the true mixture in the presence of disconnected chains and is robust to noise. We complement our theoretical results with experiments on both synthetic and real data, where we observe that our method outperforms the GKV-SVD algorithm. Finally, we empirically observe that combining an EM-algorithm with our method performs best in practice, both in terms of reconstruction error with respect to the distribution of 3-trails and the mixture of Markov Chains." @default.
- W4320342857 created "2023-02-13" @default.
- W4320342857 creator A5052011454 @default.
- W4320342857 creator A5069421706 @default.
- W4320342857 date "2023-02-09" @default.
- W4320342857 modified "2023-09-23" @default.
- W4320342857 title "Learning Mixtures of Markov Chains with Quality Guarantees" @default.
- W4320342857 doi "https://doi.org/10.48550/arxiv.2302.04680" @default.
- W4320342857 hasPublicationYear "2023" @default.
- W4320342857 type Work @default.
- W4320342857 citedByCount "0" @default.
- W4320342857 crossrefType "posted-content" @default.
- W4320342857 hasAuthorship W4320342857A5052011454 @default.
- W4320342857 hasAuthorship W4320342857A5069421706 @default.
- W4320342857 hasBestOaLocation W43203428571 @default.
- W4320342857 hasConcept C104317684 @default.
- W4320342857 hasConcept C112313634 @default.
- W4320342857 hasConcept C11413529 @default.
- W4320342857 hasConcept C119857082 @default.
- W4320342857 hasConcept C127716648 @default.
- W4320342857 hasConcept C154945302 @default.
- W4320342857 hasConcept C185592680 @default.
- W4320342857 hasConcept C188082640 @default.
- W4320342857 hasConcept C22019652 @default.
- W4320342857 hasConcept C22789450 @default.
- W4320342857 hasConcept C41008148 @default.
- W4320342857 hasConcept C50644808 @default.
- W4320342857 hasConcept C55493867 @default.
- W4320342857 hasConcept C73555534 @default.
- W4320342857 hasConcept C98763669 @default.
- W4320342857 hasConceptScore W4320342857C104317684 @default.
- W4320342857 hasConceptScore W4320342857C112313634 @default.
- W4320342857 hasConceptScore W4320342857C11413529 @default.
- W4320342857 hasConceptScore W4320342857C119857082 @default.
- W4320342857 hasConceptScore W4320342857C127716648 @default.
- W4320342857 hasConceptScore W4320342857C154945302 @default.
- W4320342857 hasConceptScore W4320342857C185592680 @default.
- W4320342857 hasConceptScore W4320342857C188082640 @default.
- W4320342857 hasConceptScore W4320342857C22019652 @default.
- W4320342857 hasConceptScore W4320342857C22789450 @default.
- W4320342857 hasConceptScore W4320342857C41008148 @default.
- W4320342857 hasConceptScore W4320342857C50644808 @default.
- W4320342857 hasConceptScore W4320342857C55493867 @default.
- W4320342857 hasConceptScore W4320342857C73555534 @default.
- W4320342857 hasConceptScore W4320342857C98763669 @default.
- W4320342857 hasLocation W43203428571 @default.
- W4320342857 hasOpenAccess W4320342857 @default.
- W4320342857 hasPrimaryLocation W43203428571 @default.
- W4320342857 hasRelatedWork W1999627569 @default.
- W4320342857 hasRelatedWork W2371455646 @default.
- W4320342857 hasRelatedWork W2535123820 @default.
- W4320342857 hasRelatedWork W2791824431 @default.
- W4320342857 hasRelatedWork W2989932438 @default.
- W4320342857 hasRelatedWork W3099765033 @default.
- W4320342857 hasRelatedWork W3159087789 @default.
- W4320342857 hasRelatedWork W4285802257 @default.
- W4320342857 hasRelatedWork W4313289428 @default.
- W4320342857 hasRelatedWork W97158071 @default.
- W4320342857 isParatext "false" @default.
- W4320342857 isRetracted "false" @default.
- W4320342857 workType "article" @default.