Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320342879> ?p ?o ?g. }
Showing items 1 to 51 of
51
with 100 items per page.
- W4320342879 abstract "Submodular setfunctions play an important role in potential theory, and a perhaps even more important role in combinatorial optimization. The analytic line of research goes back to the work of Choquet; the combinatorial, to the work of Rado and Edmonds. The two research lines have not had much interaction though. Recently, with the development of graph limit theory, the question of a limit theory for matroids has been asked by several people; such a theory will, most likely, involve submodular setfunctions both on finite and infinite sets. The goal of this working paper is to describe several connections between the analytic and combinatorial theory, to show parallels between them, and to propose problems arising by trying the generalize the rich theory of submodular setfunctions on finite sets to the analytic setting. It is aimed more to combinatorialists, and it spends more time on developing the analytic theory, often referring to results in combinatorial optimization by name or sketch" @default.
- W4320342879 created "2023-02-13" @default.
- W4320342879 creator A5067889485 @default.
- W4320342879 date "2023-02-09" @default.
- W4320342879 modified "2023-09-23" @default.
- W4320342879 title "Submodular setfunctions on sigma-algebras" @default.
- W4320342879 doi "https://doi.org/10.48550/arxiv.2302.04704" @default.
- W4320342879 hasPublicationYear "2023" @default.
- W4320342879 type Work @default.
- W4320342879 citedByCount "0" @default.
- W4320342879 crossrefType "posted-content" @default.
- W4320342879 hasAuthorship W4320342879A5067889485 @default.
- W4320342879 hasBestOaLocation W43203428791 @default.
- W4320342879 hasConcept C106286213 @default.
- W4320342879 hasConcept C11413529 @default.
- W4320342879 hasConcept C114614502 @default.
- W4320342879 hasConcept C118615104 @default.
- W4320342879 hasConcept C134306372 @default.
- W4320342879 hasConcept C151201525 @default.
- W4320342879 hasConcept C178621042 @default.
- W4320342879 hasConcept C2779231336 @default.
- W4320342879 hasConcept C33923547 @default.
- W4320342879 hasConcept C41008148 @default.
- W4320342879 hasConcept C88230418 @default.
- W4320342879 hasConceptScore W4320342879C106286213 @default.
- W4320342879 hasConceptScore W4320342879C11413529 @default.
- W4320342879 hasConceptScore W4320342879C114614502 @default.
- W4320342879 hasConceptScore W4320342879C118615104 @default.
- W4320342879 hasConceptScore W4320342879C134306372 @default.
- W4320342879 hasConceptScore W4320342879C151201525 @default.
- W4320342879 hasConceptScore W4320342879C178621042 @default.
- W4320342879 hasConceptScore W4320342879C2779231336 @default.
- W4320342879 hasConceptScore W4320342879C33923547 @default.
- W4320342879 hasConceptScore W4320342879C41008148 @default.
- W4320342879 hasConceptScore W4320342879C88230418 @default.
- W4320342879 hasLocation W43203428791 @default.
- W4320342879 hasOpenAccess W4320342879 @default.
- W4320342879 hasPrimaryLocation W43203428791 @default.
- W4320342879 hasRelatedWork W1978795414 @default.
- W4320342879 hasRelatedWork W2069295853 @default.
- W4320342879 hasRelatedWork W2071109974 @default.
- W4320342879 hasRelatedWork W2206386752 @default.
- W4320342879 hasRelatedWork W2278268662 @default.
- W4320342879 hasRelatedWork W2542402847 @default.
- W4320342879 hasRelatedWork W2900551979 @default.
- W4320342879 hasRelatedWork W2964600740 @default.
- W4320342879 hasRelatedWork W4289285488 @default.
- W4320342879 hasRelatedWork W3023017316 @default.
- W4320342879 isParatext "false" @default.
- W4320342879 isRetracted "false" @default.
- W4320342879 workType "article" @default.