Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320482308> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4320482308 abstract "Abstract Objective We aimed to develop a 5-year overall survival prediction model for patients with oral tongue squamous cell carcinoma based on machine learning methods. Subjects and Methods: The data were obtained from electronic medical records of 224 OTSCC patients at the PLA General Hospital. A five-year overall survival prediction model was constructed using logistic regression, Support Vector Machines, Decision Tree, Random Forest, Extreme Gradient Boosting, and Light Gradient Boosting Machine. Model performance was evaluated according to the area under the curve (AUC) of the receiver operating characteristic curve. The output of the optimal model was explained using the Python package (SHapley Additive exPlanations, SHAP). Results After passing through the grid search and secondary modeling, the Light Gradient Boosting Machine was the best prediction model (AUC = 0.860). As explained by SHapley Additive exPlanations, N-stage, age, systemic inflammation response index, positive lymph nodes, plasma fibrinogen, lymphocyte-to-monocyte ratio, neutrophil percentage, and T-stage could perform a 5-year overall survival prediction for OTSCC. The 5-year survival rate was 42%. Conclusion The Light Gradient Boosting Machine prediction model predicted 5-year overall survival in OTSCC patients, and this predictive tool has potential prognostic implications for patients with OTSCC." @default.
- W4320482308 created "2023-02-14" @default.
- W4320482308 creator A5010484454 @default.
- W4320482308 creator A5022655187 @default.
- W4320482308 creator A5026262300 @default.
- W4320482308 creator A5028862068 @default.
- W4320482308 creator A5042058980 @default.
- W4320482308 creator A5052000487 @default.
- W4320482308 creator A5052469066 @default.
- W4320482308 creator A5064510979 @default.
- W4320482308 date "2023-02-13" @default.
- W4320482308 modified "2023-09-30" @default.
- W4320482308 title "Prediction of 5-year overall survival of tongue cancer based machine learning" @default.
- W4320482308 cites W14024944 @default.
- W4320482308 cites W2025580327 @default.
- W4320482308 cites W2096555119 @default.
- W4320482308 cites W2177870565 @default.
- W4320482308 cites W2618230854 @default.
- W4320482308 cites W2743040804 @default.
- W4320482308 cites W2791506496 @default.
- W4320482308 cites W2805167498 @default.
- W4320482308 cites W2886522935 @default.
- W4320482308 cites W2908197779 @default.
- W4320482308 cites W2911188335 @default.
- W4320482308 cites W2921551027 @default.
- W4320482308 cites W2935703330 @default.
- W4320482308 cites W3009235853 @default.
- W4320482308 cites W3047881219 @default.
- W4320482308 cites W3081120827 @default.
- W4320482308 cites W3085149612 @default.
- W4320482308 cites W3085350219 @default.
- W4320482308 cites W3107264505 @default.
- W4320482308 cites W3155447922 @default.
- W4320482308 cites W3162735244 @default.
- W4320482308 cites W3200488575 @default.
- W4320482308 cites W3205066008 @default.
- W4320482308 cites W4220992874 @default.
- W4320482308 cites W4226068612 @default.
- W4320482308 cites W3214847762 @default.
- W4320482308 doi "https://doi.org/10.21203/rs.3.rs-2538631/v1" @default.
- W4320482308 hasPublicationYear "2023" @default.
- W4320482308 type Work @default.
- W4320482308 citedByCount "0" @default.
- W4320482308 crossrefType "posted-content" @default.
- W4320482308 hasAuthorship W4320482308A5010484454 @default.
- W4320482308 hasAuthorship W4320482308A5022655187 @default.
- W4320482308 hasAuthorship W4320482308A5026262300 @default.
- W4320482308 hasAuthorship W4320482308A5028862068 @default.
- W4320482308 hasAuthorship W4320482308A5042058980 @default.
- W4320482308 hasAuthorship W4320482308A5052000487 @default.
- W4320482308 hasAuthorship W4320482308A5052469066 @default.
- W4320482308 hasAuthorship W4320482308A5064510979 @default.
- W4320482308 hasBestOaLocation W43204823081 @default.
- W4320482308 hasConcept C11413529 @default.
- W4320482308 hasConcept C119857082 @default.
- W4320482308 hasConcept C12267149 @default.
- W4320482308 hasConcept C126322002 @default.
- W4320482308 hasConcept C143998085 @default.
- W4320482308 hasConcept C151956035 @default.
- W4320482308 hasConcept C154945302 @default.
- W4320482308 hasConcept C169258074 @default.
- W4320482308 hasConcept C41008148 @default.
- W4320482308 hasConcept C46686674 @default.
- W4320482308 hasConcept C58471807 @default.
- W4320482308 hasConcept C70153297 @default.
- W4320482308 hasConcept C71924100 @default.
- W4320482308 hasConcept C84525736 @default.
- W4320482308 hasConceptScore W4320482308C11413529 @default.
- W4320482308 hasConceptScore W4320482308C119857082 @default.
- W4320482308 hasConceptScore W4320482308C12267149 @default.
- W4320482308 hasConceptScore W4320482308C126322002 @default.
- W4320482308 hasConceptScore W4320482308C143998085 @default.
- W4320482308 hasConceptScore W4320482308C151956035 @default.
- W4320482308 hasConceptScore W4320482308C154945302 @default.
- W4320482308 hasConceptScore W4320482308C169258074 @default.
- W4320482308 hasConceptScore W4320482308C41008148 @default.
- W4320482308 hasConceptScore W4320482308C46686674 @default.
- W4320482308 hasConceptScore W4320482308C58471807 @default.
- W4320482308 hasConceptScore W4320482308C70153297 @default.
- W4320482308 hasConceptScore W4320482308C71924100 @default.
- W4320482308 hasConceptScore W4320482308C84525736 @default.
- W4320482308 hasLocation W43204823081 @default.
- W4320482308 hasOpenAccess W4320482308 @default.
- W4320482308 hasPrimaryLocation W43204823081 @default.
- W4320482308 hasRelatedWork W3080602699 @default.
- W4320482308 hasRelatedWork W3200719183 @default.
- W4320482308 hasRelatedWork W4200057378 @default.
- W4320482308 hasRelatedWork W4214951795 @default.
- W4320482308 hasRelatedWork W4229443789 @default.
- W4320482308 hasRelatedWork W4288057626 @default.
- W4320482308 hasRelatedWork W4292373754 @default.
- W4320482308 hasRelatedWork W4293069612 @default.
- W4320482308 hasRelatedWork W4308654587 @default.
- W4320482308 hasRelatedWork W4328133444 @default.
- W4320482308 isParatext "false" @default.
- W4320482308 isRetracted "false" @default.
- W4320482308 workType "article" @default.