Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320483923> ?p ?o ?g. }
- W4320483923 endingPage "1111" @default.
- W4320483923 startingPage "1091" @default.
- W4320483923 abstract "There is a widely recognized need to reduce human activity's impact on the environment. Many industries of the leather and textile sector (LTI), being aware of producing a significant amount of residues (Keßler et al. 2021; Liu et al. 2021), are adopting measures to reduce the impact of their processes on the environment, starting with a more comprehensive characterization of the chemical risk associated with the substances commonly used in LTI. The present work contributes to these efforts by compiling and toxicologically annotating the substances used in LTI, supporting a continuous learning strategy for characterizing their chemical safety. This strategy combines data collection from public sources, experimental methods and in silico predictions for characterizing four different endpoints: CMR, ED, PBT, and vPvB. We present the results of a prospective validation exercise in which we confirm that in silico methods can produce reasonably good hazard estimations and fill knowledge gaps in the LTI chemical space. The proposed protocol can speed the process and optimize the use of resources including the lives of experimental animals, contributing to identifying potentially harmful substances and their possible replacement by safer alternatives, thus reducing the environmental footprint and impact on human health." @default.
- W4320483923 created "2023-02-14" @default.
- W4320483923 creator A5012612056 @default.
- W4320483923 creator A5013364385 @default.
- W4320483923 creator A5013941580 @default.
- W4320483923 creator A5019299494 @default.
- W4320483923 creator A5020653832 @default.
- W4320483923 creator A5029488318 @default.
- W4320483923 creator A5035694316 @default.
- W4320483923 creator A5039097987 @default.
- W4320483923 creator A5041725623 @default.
- W4320483923 creator A5056335906 @default.
- W4320483923 creator A5058712463 @default.
- W4320483923 creator A5065612130 @default.
- W4320483923 creator A5076446637 @default.
- W4320483923 date "2023-02-12" @default.
- W4320483923 modified "2023-10-14" @default.
- W4320483923 title "A continuous in silico learning strategy to identify safety liabilities in compounds used in the leather and textile industry" @default.
- W4320483923 cites W1570008317 @default.
- W4320483923 cites W1988195734 @default.
- W4320483923 cites W1991352137 @default.
- W4320483923 cites W1994249991 @default.
- W4320483923 cites W1995374903 @default.
- W4320483923 cites W2005998762 @default.
- W4320483923 cites W20181848 @default.
- W4320483923 cites W2020106098 @default.
- W4320483923 cites W2089332541 @default.
- W4320483923 cites W2120612018 @default.
- W4320483923 cites W2151697120 @default.
- W4320483923 cites W2155660185 @default.
- W4320483923 cites W2171954476 @default.
- W4320483923 cites W2485205445 @default.
- W4320483923 cites W2497365301 @default.
- W4320483923 cites W2619737194 @default.
- W4320483923 cites W2793814093 @default.
- W4320483923 cites W2799297366 @default.
- W4320483923 cites W2802404464 @default.
- W4320483923 cites W2903800243 @default.
- W4320483923 cites W2929823155 @default.
- W4320483923 cites W2945403353 @default.
- W4320483923 cites W3013702460 @default.
- W4320483923 cites W3093152954 @default.
- W4320483923 cites W3097145107 @default.
- W4320483923 cites W3106971548 @default.
- W4320483923 cites W3125408630 @default.
- W4320483923 cites W3158812271 @default.
- W4320483923 cites W3173626804 @default.
- W4320483923 cites W4210476037 @default.
- W4320483923 cites W4231240267 @default.
- W4320483923 cites W4233165131 @default.
- W4320483923 cites W4248623130 @default.
- W4320483923 cites W4255738197 @default.
- W4320483923 doi "https://doi.org/10.1007/s00204-023-03459-7" @default.
- W4320483923 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36781432" @default.
- W4320483923 hasPublicationYear "2023" @default.
- W4320483923 type Work @default.
- W4320483923 citedByCount "0" @default.
- W4320483923 crossrefType "journal-article" @default.
- W4320483923 hasAuthorship W4320483923A5012612056 @default.
- W4320483923 hasAuthorship W4320483923A5013364385 @default.
- W4320483923 hasAuthorship W4320483923A5013941580 @default.
- W4320483923 hasAuthorship W4320483923A5019299494 @default.
- W4320483923 hasAuthorship W4320483923A5020653832 @default.
- W4320483923 hasAuthorship W4320483923A5029488318 @default.
- W4320483923 hasAuthorship W4320483923A5035694316 @default.
- W4320483923 hasAuthorship W4320483923A5039097987 @default.
- W4320483923 hasAuthorship W4320483923A5041725623 @default.
- W4320483923 hasAuthorship W4320483923A5056335906 @default.
- W4320483923 hasAuthorship W4320483923A5058712463 @default.
- W4320483923 hasAuthorship W4320483923A5065612130 @default.
- W4320483923 hasAuthorship W4320483923A5076446637 @default.
- W4320483923 hasBestOaLocation W43204839231 @default.
- W4320483923 hasConcept C104317684 @default.
- W4320483923 hasConcept C111919701 @default.
- W4320483923 hasConcept C112930515 @default.
- W4320483923 hasConcept C127413603 @default.
- W4320483923 hasConcept C142724271 @default.
- W4320483923 hasConcept C144133560 @default.
- W4320483923 hasConcept C183696295 @default.
- W4320483923 hasConcept C18903297 @default.
- W4320483923 hasConcept C204787440 @default.
- W4320483923 hasConcept C2775905019 @default.
- W4320483923 hasConcept C2776654903 @default.
- W4320483923 hasConcept C2780385302 @default.
- W4320483923 hasConcept C2987857752 @default.
- W4320483923 hasConcept C38652104 @default.
- W4320483923 hasConcept C41008148 @default.
- W4320483923 hasConcept C49261128 @default.
- W4320483923 hasConcept C55493867 @default.
- W4320483923 hasConcept C60644358 @default.
- W4320483923 hasConcept C71924100 @default.
- W4320483923 hasConcept C74187038 @default.
- W4320483923 hasConcept C86803240 @default.
- W4320483923 hasConcept C98045186 @default.
- W4320483923 hasConcept C99454951 @default.
- W4320483923 hasConcept C99726746 @default.
- W4320483923 hasConceptScore W4320483923C104317684 @default.
- W4320483923 hasConceptScore W4320483923C111919701 @default.