Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320486595> ?p ?o ?g. }
- W4320486595 endingPage "81" @default.
- W4320486595 startingPage "70" @default.
- W4320486595 abstract "A challenging opportunity in structural health monitoring of composite materials is using machine learning (ML) methods to classify acoustic emissions according to the damage mechanism that emitted the signal. A wide variety of ML frameworks have been developed; however, lack of ground truth datasets in addition to limited overlap between experimental configurations has precluded any direct, quantitative benchmarking of their accuracy. Here, we generate a ground truth dataset comprised of pencil lead breaks with known angles of incidence, $$theta $$ . Each angle generates a unique frequency spectrum that changes continuously with $$theta $$ , which could be analogous to attributes of acoustic emission signals generated from failure processes, such as those that occur in composites. Five frameworks are then applied to the ground truth dataset and benchmarked according to their ability to discriminate between two sets of signals with a fixed $$Delta theta $$ . A discussion of their performance as related to choice of features is given, and a set of guidelines for best-practices for feature selection and standardized practices are proposed." @default.
- W4320486595 created "2023-02-14" @default.
- W4320486595 creator A5012592109 @default.
- W4320486595 creator A5032474098 @default.
- W4320486595 creator A5034195907 @default.
- W4320486595 creator A5035755366 @default.
- W4320486595 creator A5040210091 @default.
- W4320486595 creator A5043744964 @default.
- W4320486595 creator A5051944170 @default.
- W4320486595 creator A5074132886 @default.
- W4320486595 creator A5075647965 @default.
- W4320486595 creator A5080874073 @default.
- W4320486595 creator A5090583111 @default.
- W4320486595 date "2023-02-13" @default.
- W4320486595 modified "2023-10-12" @default.
- W4320486595 title "Quantitative Benchmarking of Acoustic Emission Machine Learning Frameworks for Damage Mechanism Identification" @default.
- W4320486595 cites W1844204632 @default.
- W4320486595 cites W1970887162 @default.
- W4320486595 cites W1992419399 @default.
- W4320486595 cites W1996117826 @default.
- W4320486595 cites W2002213959 @default.
- W4320486595 cites W2009482598 @default.
- W4320486595 cites W2020771758 @default.
- W4320486595 cites W2022626790 @default.
- W4320486595 cites W2023119166 @default.
- W4320486595 cites W2032460695 @default.
- W4320486595 cites W2033403400 @default.
- W4320486595 cites W2064091681 @default.
- W4320486595 cites W2066506594 @default.
- W4320486595 cites W2067235525 @default.
- W4320486595 cites W2070554160 @default.
- W4320486595 cites W2084473490 @default.
- W4320486595 cites W2090113022 @default.
- W4320486595 cites W2092893631 @default.
- W4320486595 cites W2108598243 @default.
- W4320486595 cites W2132549764 @default.
- W4320486595 cites W2133633343 @default.
- W4320486595 cites W2148394752 @default.
- W4320486595 cites W2193045105 @default.
- W4320486595 cites W2519188269 @default.
- W4320486595 cites W2789279390 @default.
- W4320486595 cites W2791276491 @default.
- W4320486595 cites W2940320374 @default.
- W4320486595 cites W2946513207 @default.
- W4320486595 cites W2949650786 @default.
- W4320486595 cites W3000556607 @default.
- W4320486595 cites W3006922780 @default.
- W4320486595 cites W3017816046 @default.
- W4320486595 cites W3028633900 @default.
- W4320486595 cites W3094537512 @default.
- W4320486595 cites W3103145119 @default.
- W4320486595 cites W3118519758 @default.
- W4320486595 cites W3173266794 @default.
- W4320486595 cites W4235169531 @default.
- W4320486595 cites W943488754 @default.
- W4320486595 doi "https://doi.org/10.1007/s40192-023-00293-8" @default.
- W4320486595 hasPublicationYear "2023" @default.
- W4320486595 type Work @default.
- W4320486595 citedByCount "0" @default.
- W4320486595 crossrefType "journal-article" @default.
- W4320486595 hasAuthorship W4320486595A5012592109 @default.
- W4320486595 hasAuthorship W4320486595A5032474098 @default.
- W4320486595 hasAuthorship W4320486595A5034195907 @default.
- W4320486595 hasAuthorship W4320486595A5035755366 @default.
- W4320486595 hasAuthorship W4320486595A5040210091 @default.
- W4320486595 hasAuthorship W4320486595A5043744964 @default.
- W4320486595 hasAuthorship W4320486595A5051944170 @default.
- W4320486595 hasAuthorship W4320486595A5074132886 @default.
- W4320486595 hasAuthorship W4320486595A5075647965 @default.
- W4320486595 hasAuthorship W4320486595A5080874073 @default.
- W4320486595 hasAuthorship W4320486595A5090583111 @default.
- W4320486595 hasBestOaLocation W43204865951 @default.
- W4320486595 hasConcept C116834253 @default.
- W4320486595 hasConcept C119857082 @default.
- W4320486595 hasConcept C121332964 @default.
- W4320486595 hasConcept C136197465 @default.
- W4320486595 hasConcept C144133560 @default.
- W4320486595 hasConcept C146849305 @default.
- W4320486595 hasConcept C153180895 @default.
- W4320486595 hasConcept C154945302 @default.
- W4320486595 hasConcept C162853370 @default.
- W4320486595 hasConcept C174598085 @default.
- W4320486595 hasConcept C177264268 @default.
- W4320486595 hasConcept C199360897 @default.
- W4320486595 hasConcept C24890656 @default.
- W4320486595 hasConcept C2779843651 @default.
- W4320486595 hasConcept C41008148 @default.
- W4320486595 hasConcept C45942800 @default.
- W4320486595 hasConcept C59822182 @default.
- W4320486595 hasConcept C62520636 @default.
- W4320486595 hasConcept C86251818 @default.
- W4320486595 hasConcept C86803240 @default.
- W4320486595 hasConcept C89611455 @default.
- W4320486595 hasConceptScore W4320486595C116834253 @default.
- W4320486595 hasConceptScore W4320486595C119857082 @default.
- W4320486595 hasConceptScore W4320486595C121332964 @default.
- W4320486595 hasConceptScore W4320486595C136197465 @default.
- W4320486595 hasConceptScore W4320486595C144133560 @default.