Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320486974> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4320486974 endingPage "106662" @default.
- W4320486974 startingPage "106662" @default.
- W4320486974 abstract "Abundant medical data are generated in the digital world every second. However, gathering helpful information from these data is difficult. Gathering useful information from the dataset is very advantageous and demanding. Besides, such data also contain many extraneous features that do not influence the foreboding accuracy while diagnosing a disease. The data must eliminate these extraneous features to get a better diagnosis. Ultimately, the minimized information system will lead to a better diagnosis. In this paper, we have introduced an incremental rough set shuffled frog leaping algorithm for knowledge inference. The proposed algorithm helps find minimum features from an information system while handling complex databases with uncertainty and incompleteness. The proposed rough set shuffled frog leaping knowledge inference model works in two phases. In the initial phase, the incremental rough set shuffled frog leaping algorithm is used to get the most relevant features. Identifying the relevant features is carried out using a fitness function, which uses the rough degree of dependency. The use of the fitness function identifies the much information with the minimum number of features. The purpose of feature selection is to identify a feature subset from an original set of features without reducing the predictive accuracy and to scale back the computation overhead in the data processing. In the second phase, a rough set is utilized for knowledge discovery in perception with rule generation. The selection of decision rules is carried out based on the accuracy of the decision rule and a predefined threshold value. An empirical analysis of the lung disease information system and a comparative study is conducted. Experimental outcomes exhibit that hybrid techniques express the feasibility of the proposed model while achieving better classification accuracy." @default.
- W4320486974 created "2023-02-14" @default.
- W4320486974 creator A5014582599 @default.
- W4320486974 creator A5029325643 @default.
- W4320486974 date "2023-03-01" @default.
- W4320486974 modified "2023-10-14" @default.
- W4320486974 title "A hybrid rough set shuffled frog leaping knowledge inference system for diagnosis of lung cancer disease" @default.
- W4320486974 cites W1968355947 @default.
- W4320486974 cites W1983798351 @default.
- W4320486974 cites W1985460844 @default.
- W4320486974 cites W1994114449 @default.
- W4320486974 cites W1994227608 @default.
- W4320486974 cites W1994227850 @default.
- W4320486974 cites W1997687853 @default.
- W4320486974 cites W2006907039 @default.
- W4320486974 cites W2011487750 @default.
- W4320486974 cites W2024251982 @default.
- W4320486974 cites W2036999870 @default.
- W4320486974 cites W2038411763 @default.
- W4320486974 cites W2052478623 @default.
- W4320486974 cites W2061932411 @default.
- W4320486974 cites W2079380188 @default.
- W4320486974 cites W2080562691 @default.
- W4320486974 cites W2114703358 @default.
- W4320486974 cites W2118023920 @default.
- W4320486974 cites W2143451122 @default.
- W4320486974 cites W2143560894 @default.
- W4320486974 cites W2159142099 @default.
- W4320486974 cites W2165466912 @default.
- W4320486974 cites W2290883490 @default.
- W4320486974 cites W2338873322 @default.
- W4320486974 cites W2340020088 @default.
- W4320486974 cites W2517600007 @default.
- W4320486974 cites W2896403830 @default.
- W4320486974 cites W2919979744 @default.
- W4320486974 cites W3014974411 @default.
- W4320486974 cites W3027643484 @default.
- W4320486974 cites W3037950543 @default.
- W4320486974 cites W3208919116 @default.
- W4320486974 cites W341879454 @default.
- W4320486974 cites W4238961266 @default.
- W4320486974 cites W4255833381 @default.
- W4320486974 cites W4285602720 @default.
- W4320486974 doi "https://doi.org/10.1016/j.compbiomed.2023.106662" @default.
- W4320486974 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36805223" @default.
- W4320486974 hasPublicationYear "2023" @default.
- W4320486974 type Work @default.
- W4320486974 citedByCount "1" @default.
- W4320486974 crossrefType "journal-article" @default.
- W4320486974 hasAuthorship W4320486974A5014582599 @default.
- W4320486974 hasAuthorship W4320486974A5029325643 @default.
- W4320486974 hasConcept C111012933 @default.
- W4320486974 hasConcept C119857082 @default.
- W4320486974 hasConcept C124101348 @default.
- W4320486974 hasConcept C138885662 @default.
- W4320486974 hasConcept C148483581 @default.
- W4320486974 hasConcept C153180895 @default.
- W4320486974 hasConcept C154945302 @default.
- W4320486974 hasConcept C177264268 @default.
- W4320486974 hasConcept C199360897 @default.
- W4320486974 hasConcept C2776214188 @default.
- W4320486974 hasConcept C2776401178 @default.
- W4320486974 hasConcept C41008148 @default.
- W4320486974 hasConcept C41895202 @default.
- W4320486974 hasConcept C81917197 @default.
- W4320486974 hasConceptScore W4320486974C111012933 @default.
- W4320486974 hasConceptScore W4320486974C119857082 @default.
- W4320486974 hasConceptScore W4320486974C124101348 @default.
- W4320486974 hasConceptScore W4320486974C138885662 @default.
- W4320486974 hasConceptScore W4320486974C148483581 @default.
- W4320486974 hasConceptScore W4320486974C153180895 @default.
- W4320486974 hasConceptScore W4320486974C154945302 @default.
- W4320486974 hasConceptScore W4320486974C177264268 @default.
- W4320486974 hasConceptScore W4320486974C199360897 @default.
- W4320486974 hasConceptScore W4320486974C2776214188 @default.
- W4320486974 hasConceptScore W4320486974C2776401178 @default.
- W4320486974 hasConceptScore W4320486974C41008148 @default.
- W4320486974 hasConceptScore W4320486974C41895202 @default.
- W4320486974 hasConceptScore W4320486974C81917197 @default.
- W4320486974 hasLocation W43204869741 @default.
- W4320486974 hasLocation W43204869742 @default.
- W4320486974 hasOpenAccess W4320486974 @default.
- W4320486974 hasPrimaryLocation W43204869741 @default.
- W4320486974 hasRelatedWork W1605308969 @default.
- W4320486974 hasRelatedWork W2117389543 @default.
- W4320486974 hasRelatedWork W2316780152 @default.
- W4320486974 hasRelatedWork W2374344280 @default.
- W4320486974 hasRelatedWork W2546942002 @default.
- W4320486974 hasRelatedWork W2970216048 @default.
- W4320486974 hasRelatedWork W3163334550 @default.
- W4320486974 hasRelatedWork W3200179079 @default.
- W4320486974 hasRelatedWork W4293525103 @default.
- W4320486974 hasRelatedWork W2345184372 @default.
- W4320486974 hasVolume "155" @default.
- W4320486974 isParatext "false" @default.
- W4320486974 isRetracted "false" @default.
- W4320486974 workType "article" @default.