Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320487053> ?p ?o ?g. }
- W4320487053 endingPage "e13636" @default.
- W4320487053 startingPage "e13636" @default.
- W4320487053 abstract "Convolutional neural networks (CNNs) have demonstrated exceptional results in the analysis of time- series data when used for Human Activity Recognition (HAR). The manual design of such neural architectures is an error-prone and time-consuming process. The search for optimal CNN architectures is considered a revolution in the design of neural networks. By means of Neural Architecture Search (NAS), network architectures can be designed and optimized automatically. Thus, the optimal CNN architecture representation can be found automatically because of its ability to overcome the limitations of human experience and thinking modes. Evolution algorithms, which are derived from evolutionary mechanisms such as natural selection and genetics, have been widely employed to develop and optimize NAS because they can handle a blackbox optimization process for designing appropriate solution representations and search paradigms without explicit mathematical formulations or gradient information. The Genetic optimization algorithm (GA) is widely used to find optimal or near-optimal solutions for difficult problems. Considering these characteristics, an efficient human activity recognition architecture (AUTO-HAR) is presented in this study. Using the evolutionary GA to select the optimal CNN architecture, the current study proposes a novel encoding schema structure and a novel search space with a much broader range of operations to effectively search for the best architectures for HAR tasks. In addition, the proposed search space provides a reasonable degree of depth because it does not limit the maximum length of the devised task architecture. To test the effectiveness of the proposed framework for HAR tasks, three datasets were utilized: UCI-HAR, Opportunity, and DAPHNET. Based on the results of this study, it has been found that the proposed method can efficiently recognize human activity with an average accuracy of 98.5% (∓1.1), 98.3%, and 99.14% (∓0.8) for UCI-HAR, Opportunity, and DAPHNET, respectively." @default.
- W4320487053 created "2023-02-14" @default.
- W4320487053 creator A5000072934 @default.
- W4320487053 creator A5045396441 @default.
- W4320487053 creator A5085933596 @default.
- W4320487053 creator A5088664510 @default.
- W4320487053 date "2023-02-01" @default.
- W4320487053 modified "2023-09-30" @default.
- W4320487053 title "AUTO-HAR: An adaptive human activity recognition framework using an automated CNN architecture design" @default.
- W4320487053 cites W1232458005 @default.
- W4320487053 cites W2008963215 @default.
- W4320487053 cites W2111935653 @default.
- W4320487053 cites W2133994857 @default.
- W4320487053 cites W2294708468 @default.
- W4320487053 cites W2789641460 @default.
- W4320487053 cites W2801908962 @default.
- W4320487053 cites W2809282873 @default.
- W4320487053 cites W2887063112 @default.
- W4320487053 cites W2906697496 @default.
- W4320487053 cites W2921861344 @default.
- W4320487053 cites W2953308748 @default.
- W4320487053 cites W2994365842 @default.
- W4320487053 cites W2995628968 @default.
- W4320487053 cites W2998526951 @default.
- W4320487053 cites W2999552082 @default.
- W4320487053 cites W3011696708 @default.
- W4320487053 cites W3030598404 @default.
- W4320487053 cites W3036532411 @default.
- W4320487053 cites W3089820912 @default.
- W4320487053 cites W3109552991 @default.
- W4320487053 cites W3128348732 @default.
- W4320487053 cites W3131107316 @default.
- W4320487053 cites W3145877409 @default.
- W4320487053 cites W3157839123 @default.
- W4320487053 cites W3157943311 @default.
- W4320487053 cites W3158597650 @default.
- W4320487053 cites W3162538709 @default.
- W4320487053 cites W3173369353 @default.
- W4320487053 cites W3192682950 @default.
- W4320487053 cites W3194035421 @default.
- W4320487053 cites W3203455242 @default.
- W4320487053 cites W3207672581 @default.
- W4320487053 cites W3209258816 @default.
- W4320487053 cites W3210766530 @default.
- W4320487053 cites W3215406315 @default.
- W4320487053 cites W4200162807 @default.
- W4320487053 cites W4200317051 @default.
- W4320487053 cites W4200533862 @default.
- W4320487053 cites W4200571910 @default.
- W4320487053 cites W4205380754 @default.
- W4320487053 cites W4207047374 @default.
- W4320487053 cites W4210805261 @default.
- W4320487053 cites W4213439103 @default.
- W4320487053 cites W4220739053 @default.
- W4320487053 cites W4220803477 @default.
- W4320487053 cites W4220882076 @default.
- W4320487053 cites W4292722085 @default.
- W4320487053 cites W4294012891 @default.
- W4320487053 cites W3108036642 @default.
- W4320487053 doi "https://doi.org/10.1016/j.heliyon.2023.e13636" @default.
- W4320487053 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36852018" @default.
- W4320487053 hasPublicationYear "2023" @default.
- W4320487053 type Work @default.
- W4320487053 citedByCount "3" @default.
- W4320487053 countsByYear W43204870532023 @default.
- W4320487053 crossrefType "journal-article" @default.
- W4320487053 hasAuthorship W4320487053A5000072934 @default.
- W4320487053 hasAuthorship W4320487053A5045396441 @default.
- W4320487053 hasAuthorship W4320487053A5085933596 @default.
- W4320487053 hasAuthorship W4320487053A5088664510 @default.
- W4320487053 hasBestOaLocation W43204870531 @default.
- W4320487053 hasConcept C111919701 @default.
- W4320487053 hasConcept C119857082 @default.
- W4320487053 hasConcept C123657996 @default.
- W4320487053 hasConcept C125411270 @default.
- W4320487053 hasConcept C142362112 @default.
- W4320487053 hasConcept C153349607 @default.
- W4320487053 hasConcept C154945302 @default.
- W4320487053 hasConcept C159149176 @default.
- W4320487053 hasConcept C41008148 @default.
- W4320487053 hasConcept C50644808 @default.
- W4320487053 hasConcept C52146309 @default.
- W4320487053 hasConcept C81363708 @default.
- W4320487053 hasConcept C8880873 @default.
- W4320487053 hasConcept C98045186 @default.
- W4320487053 hasConceptScore W4320487053C111919701 @default.
- W4320487053 hasConceptScore W4320487053C119857082 @default.
- W4320487053 hasConceptScore W4320487053C123657996 @default.
- W4320487053 hasConceptScore W4320487053C125411270 @default.
- W4320487053 hasConceptScore W4320487053C142362112 @default.
- W4320487053 hasConceptScore W4320487053C153349607 @default.
- W4320487053 hasConceptScore W4320487053C154945302 @default.
- W4320487053 hasConceptScore W4320487053C159149176 @default.
- W4320487053 hasConceptScore W4320487053C41008148 @default.
- W4320487053 hasConceptScore W4320487053C50644808 @default.
- W4320487053 hasConceptScore W4320487053C52146309 @default.
- W4320487053 hasConceptScore W4320487053C81363708 @default.
- W4320487053 hasConceptScore W4320487053C8880873 @default.