Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320498049> ?p ?o ?g. }
- W4320498049 endingPage "e13289" @default.
- W4320498049 startingPage "e13289" @default.
- W4320498049 abstract "China has become the country with the largest number of people with type 2 diabetes mellitus (T2DM), and Chinese medicine (CM) has unique advantages in preventing and treating T2DM, while accurate pattern differentiation is the guarantee for proper treatment.The establishment of the CM pattern differentiation model of T2DM is helpful to the pattern diagnosis of the disease. At present, there are few studies on dampness-heat pattern differentiation models of T2DM. Therefore, we establish a machine learning model, hoping to provide an efficient tool for the pattern diagnosis of CM for T2DM in the future.A total of 1021 effective samples of T2DM patients from ten CM hospitals or clinics were collected by a questionnaire including patients' demographic and dampness-heat-related symptoms and signs. All information and the diagnosis of the dampness-heat pattern of patients were completed by experienced CM physicians at each visit. We applied six machine learning algorithms (Artificial Neural Network [ANN], K-Nearest Neighbor [KNN], Naïve Bayes [NB], Support Vector Machine [SVM], Extreme Gradient Boosting [XGBoost] and Random Forest [RF]) and compared their performance. And then we also utilized Shapley additive explanation (SHAP) method to explain the best performance model.The XGBoost model had the highest AUC (0.951, 95% CI 0.925-0.978) among the six models, with the best sensitivity, accuracy, F1 score, negative predictive value, and excellent specificity, precision, and positive predictive value. The SHAP method based on XGBoost showed that slimy yellow tongue fur was the most important sign in dampness-heat pattern diagnosis. The slippery pulse or rapid-slippery pulse, sticky stool with ungratifying defecation also performed an important role in this diagnostic model. Furthermore, the red tongue acted as an important tongue sign for the dampness-heat pattern.This study constructed a dampness-heat pattern differentiation model of T2DM based on machine learning. The XGBoost model is a tool with the potential to help CM practitioners make quick diagnosis decisions and contribute to the standardization and international application of CM patterns." @default.
- W4320498049 created "2023-02-14" @default.
- W4320498049 creator A5000033522 @default.
- W4320498049 creator A5007768703 @default.
- W4320498049 creator A5011681852 @default.
- W4320498049 creator A5012834626 @default.
- W4320498049 creator A5016869894 @default.
- W4320498049 creator A5028184796 @default.
- W4320498049 creator A5032507421 @default.
- W4320498049 creator A5039393598 @default.
- W4320498049 creator A5041723876 @default.
- W4320498049 creator A5072842356 @default.
- W4320498049 creator A5079650655 @default.
- W4320498049 creator A5088499834 @default.
- W4320498049 date "2023-02-01" @default.
- W4320498049 modified "2023-10-09" @default.
- W4320498049 title "Application of machine learning in Chinese medicine differentiation of dampness-heat pattern in patients with type 2 diabetes mellitus" @default.
- W4320498049 cites W1569103839 @default.
- W4320498049 cites W2011550183 @default.
- W4320498049 cites W2059838615 @default.
- W4320498049 cites W2073362503 @default.
- W4320498049 cites W2078304218 @default.
- W4320498049 cites W2102227502 @default.
- W4320498049 cites W2131414141 @default.
- W4320498049 cites W2272705630 @default.
- W4320498049 cites W2569989634 @default.
- W4320498049 cites W2588978745 @default.
- W4320498049 cites W2730920132 @default.
- W4320498049 cites W2886522935 @default.
- W4320498049 cites W2913240367 @default.
- W4320498049 cites W2946040156 @default.
- W4320498049 cites W2985528468 @default.
- W4320498049 cites W2999615587 @default.
- W4320498049 cites W3009207988 @default.
- W4320498049 cites W3009271828 @default.
- W4320498049 cites W3011491737 @default.
- W4320498049 cites W3020528808 @default.
- W4320498049 cites W3034475813 @default.
- W4320498049 cites W3040715295 @default.
- W4320498049 cites W3083150398 @default.
- W4320498049 cites W3093484673 @default.
- W4320498049 cites W3104761038 @default.
- W4320498049 cites W3107380043 @default.
- W4320498049 cites W3111698685 @default.
- W4320498049 cites W3127253295 @default.
- W4320498049 cites W3134705661 @default.
- W4320498049 cites W3163202801 @default.
- W4320498049 cites W3163988590 @default.
- W4320498049 cites W3165437720 @default.
- W4320498049 cites W3171484921 @default.
- W4320498049 cites W3176329507 @default.
- W4320498049 cites W3181125731 @default.
- W4320498049 cites W3183218270 @default.
- W4320498049 cites W3188900945 @default.
- W4320498049 cites W3194979994 @default.
- W4320498049 cites W3198879979 @default.
- W4320498049 cites W4210631715 @default.
- W4320498049 cites W4237269304 @default.
- W4320498049 cites W4312194809 @default.
- W4320498049 cites W4200600210 @default.
- W4320498049 doi "https://doi.org/10.1016/j.heliyon.2023.e13289" @default.
- W4320498049 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36873141" @default.
- W4320498049 hasPublicationYear "2023" @default.
- W4320498049 type Work @default.
- W4320498049 citedByCount "0" @default.
- W4320498049 crossrefType "journal-article" @default.
- W4320498049 hasAuthorship W4320498049A5000033522 @default.
- W4320498049 hasAuthorship W4320498049A5007768703 @default.
- W4320498049 hasAuthorship W4320498049A5011681852 @default.
- W4320498049 hasAuthorship W4320498049A5012834626 @default.
- W4320498049 hasAuthorship W4320498049A5016869894 @default.
- W4320498049 hasAuthorship W4320498049A5028184796 @default.
- W4320498049 hasAuthorship W4320498049A5032507421 @default.
- W4320498049 hasAuthorship W4320498049A5039393598 @default.
- W4320498049 hasAuthorship W4320498049A5041723876 @default.
- W4320498049 hasAuthorship W4320498049A5072842356 @default.
- W4320498049 hasAuthorship W4320498049A5079650655 @default.
- W4320498049 hasAuthorship W4320498049A5088499834 @default.
- W4320498049 hasBestOaLocation W43204980491 @default.
- W4320498049 hasConcept C119857082 @default.
- W4320498049 hasConcept C12267149 @default.
- W4320498049 hasConcept C126322002 @default.
- W4320498049 hasConcept C134018914 @default.
- W4320498049 hasConcept C142724271 @default.
- W4320498049 hasConcept C154945302 @default.
- W4320498049 hasConcept C169258074 @default.
- W4320498049 hasConcept C188947578 @default.
- W4320498049 hasConcept C204787440 @default.
- W4320498049 hasConcept C2910068830 @default.
- W4320498049 hasConcept C33923547 @default.
- W4320498049 hasConcept C41008148 @default.
- W4320498049 hasConcept C50644808 @default.
- W4320498049 hasConcept C52001869 @default.
- W4320498049 hasConcept C555293320 @default.
- W4320498049 hasConcept C71924100 @default.
- W4320498049 hasConceptScore W4320498049C119857082 @default.
- W4320498049 hasConceptScore W4320498049C12267149 @default.
- W4320498049 hasConceptScore W4320498049C126322002 @default.