Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320506585> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4320506585 abstract "Forest restoration programmes take place globally and lay a pivotal role in addressing climate change and biodiversity loss. Often restoration programmes are based on simple plantation schemes, evenly planting trees that later on might contribute to economic activity. This, however, does not seem to be sufficient for supporting biodiversity. Recent research suggests that successful restorations should match original ecological patterns in any particular landscape, assuming that severe erosion and changing soil conditions have not taken place during disturbances. This means that understanding natural historic patterns is vital. However, achieving such understanding is often challenging, given the fact that historic satellite imagery is generally available only for relatively short time periods. It is therefore important, if possible, to model former landscape ecological patterns. Modelling might be based on different site-specific approaches and historical records. However, most powerful tools available today include deep learning and artificial intelligence. Construction and training of neural networks might allow simulation of historical forest patterns in cases when satellite imagery is not available for long time periods. Application of this technique is very likely to have important practical implications." @default.
- W4320506585 created "2023-02-14" @default.
- W4320506585 creator A5004988075 @default.
- W4320506585 creator A5024103957 @default.
- W4320506585 creator A5032518165 @default.
- W4320506585 creator A5036383013 @default.
- W4320506585 date "2022-11-15" @default.
- W4320506585 modified "2023-09-27" @default.
- W4320506585 title "NOVEL APPLICATIONS OF GIS AND ARTIFICIAL INTELLIGENCE IN FOREST RESTORATION" @default.
- W4320506585 cites W134814970 @default.
- W4320506585 cites W1966469744 @default.
- W4320506585 cites W1973991317 @default.
- W4320506585 cites W1991218065 @default.
- W4320506585 cites W2140640284 @default.
- W4320506585 cites W2140952675 @default.
- W4320506585 cites W2322480672 @default.
- W4320506585 cites W3015756600 @default.
- W4320506585 cites W3154263767 @default.
- W4320506585 cites W3155739706 @default.
- W4320506585 doi "https://doi.org/10.5593/sgem2022/3.1/s14.45" @default.
- W4320506585 hasPublicationYear "2022" @default.
- W4320506585 type Work @default.
- W4320506585 citedByCount "0" @default.
- W4320506585 crossrefType "proceedings-article" @default.
- W4320506585 hasAuthorship W4320506585A5004988075 @default.
- W4320506585 hasAuthorship W4320506585A5024103957 @default.
- W4320506585 hasAuthorship W4320506585A5032518165 @default.
- W4320506585 hasAuthorship W4320506585A5036383013 @default.
- W4320506585 hasConcept C107826830 @default.
- W4320506585 hasConcept C110872660 @default.
- W4320506585 hasConcept C130217890 @default.
- W4320506585 hasConcept C132651083 @default.
- W4320506585 hasConcept C166957645 @default.
- W4320506585 hasConcept C18903297 @default.
- W4320506585 hasConcept C205649164 @default.
- W4320506585 hasConcept C24037442 @default.
- W4320506585 hasConcept C2776608160 @default.
- W4320506585 hasConcept C2778102629 @default.
- W4320506585 hasConcept C39432304 @default.
- W4320506585 hasConcept C41008148 @default.
- W4320506585 hasConcept C62649853 @default.
- W4320506585 hasConcept C73935091 @default.
- W4320506585 hasConcept C78437154 @default.
- W4320506585 hasConcept C86803240 @default.
- W4320506585 hasConceptScore W4320506585C107826830 @default.
- W4320506585 hasConceptScore W4320506585C110872660 @default.
- W4320506585 hasConceptScore W4320506585C130217890 @default.
- W4320506585 hasConceptScore W4320506585C132651083 @default.
- W4320506585 hasConceptScore W4320506585C166957645 @default.
- W4320506585 hasConceptScore W4320506585C18903297 @default.
- W4320506585 hasConceptScore W4320506585C205649164 @default.
- W4320506585 hasConceptScore W4320506585C24037442 @default.
- W4320506585 hasConceptScore W4320506585C2776608160 @default.
- W4320506585 hasConceptScore W4320506585C2778102629 @default.
- W4320506585 hasConceptScore W4320506585C39432304 @default.
- W4320506585 hasConceptScore W4320506585C41008148 @default.
- W4320506585 hasConceptScore W4320506585C62649853 @default.
- W4320506585 hasConceptScore W4320506585C73935091 @default.
- W4320506585 hasConceptScore W4320506585C78437154 @default.
- W4320506585 hasConceptScore W4320506585C86803240 @default.
- W4320506585 hasLocation W43205065851 @default.
- W4320506585 hasOpenAccess W4320506585 @default.
- W4320506585 hasPrimaryLocation W43205065851 @default.
- W4320506585 hasRelatedWork W1801826618 @default.
- W4320506585 hasRelatedWork W1986913002 @default.
- W4320506585 hasRelatedWork W2059321516 @default.
- W4320506585 hasRelatedWork W2071841184 @default.
- W4320506585 hasRelatedWork W2376658453 @default.
- W4320506585 hasRelatedWork W2572518966 @default.
- W4320506585 hasRelatedWork W2888912327 @default.
- W4320506585 hasRelatedWork W2947593299 @default.
- W4320506585 hasRelatedWork W3160159144 @default.
- W4320506585 hasRelatedWork W600308250 @default.
- W4320506585 isParatext "false" @default.
- W4320506585 isRetracted "false" @default.
- W4320506585 workType "article" @default.