Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320521750> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4320521750 endingPage "103040" @default.
- W4320521750 startingPage "103040" @default.
- W4320521750 abstract "Biomass management in terms of energy consumption optimization has become a recent challenge for developed countries. Nevertheless, the multiplicity of materials and operating parameters controlling energy consumption in wastewater treatment plants necessitates the need for sophisticated well-organized disciplines in order to minimize energy consumption and dissipation. Sewage sludge (SS) disposal management is the key stage of this process, such that incineration due to the high costs of drying remains a matter of concern. Thus, a combination of experimental investigations and data analysis is required for an efficient plant design. Herein, we propose an intelligent tool based on Machine Learning (ML) algorithms (A: Parallel, B: Artificial Neural Network (ANN), and C: Chained, ML models) by employing SciKit-Learn library in Python, followed by hyper-parameter tuning and the k-fold cross-validation implementation. The optimizer receives simulation data from ASPEN PLUS software, and imitates the behavior of system outputs (namely, Yi: fluidized bed temperature, steam heat transfer rate, and dryer residence time in the SS) to yield optimal changing variables (namely, Xi: feed temperature, air temperature, fume temperature, steam flow rate, moisture content in the feedstock, and steam inlet temperature to dryer). The authenticity and precision of our intelligent optimizer was validated in terms of optimum heat transfer amount (the higher the better) and dryer residence time (the lower the better) by data collected from wastewater treatment plant in Gdynia (Poland), demonstrating excellent predictability of the algorithm. The R2 values for A, B, and C ML models were 0.85, 0.94, and 0.91, respectively. The B model, though slightly revealed better prediction than the C model, estimated the outputs in much lower time than the former. Thus, C model was selected as the computational tool for the optimization purpose. Overall, we claim that the methodology developed herein takes the advantage of ca. 6% saving in the total amount of energy required for incineration unit of SS disposal plant, which is well justified considering the energy crisis raised by the geopolitical issues in the area and also the high cost of energy worldwide." @default.
- W4320521750 created "2023-02-14" @default.
- W4320521750 creator A5010785993 @default.
- W4320521750 creator A5023641370 @default.
- W4320521750 creator A5023999861 @default.
- W4320521750 creator A5040516603 @default.
- W4320521750 creator A5084292110 @default.
- W4320521750 date "2023-03-01" @default.
- W4320521750 modified "2023-10-17" @default.
- W4320521750 title "Energy consumption optimization in wastewater treatment plants: Machine learning for monitoring incineration of sewage sludge" @default.
- W4320521750 cites W1043817452 @default.
- W4320521750 cites W1896138847 @default.
- W4320521750 cites W1975377626 @default.
- W4320521750 cites W2019520018 @default.
- W4320521750 cites W2478255603 @default.
- W4320521750 cites W2604286061 @default.
- W4320521750 cites W2796547499 @default.
- W4320521750 cites W2905873308 @default.
- W4320521750 cites W2906903809 @default.
- W4320521750 cites W2962976025 @default.
- W4320521750 cites W2989380632 @default.
- W4320521750 cites W3066984381 @default.
- W4320521750 cites W3097093142 @default.
- W4320521750 cites W3127436690 @default.
- W4320521750 cites W3133743901 @default.
- W4320521750 cites W3174102340 @default.
- W4320521750 cites W3194377399 @default.
- W4320521750 cites W3196914511 @default.
- W4320521750 cites W3208287835 @default.
- W4320521750 cites W3213728361 @default.
- W4320521750 cites W4206933557 @default.
- W4320521750 cites W4247601139 @default.
- W4320521750 cites W4308348734 @default.
- W4320521750 doi "https://doi.org/10.1016/j.seta.2023.103040" @default.
- W4320521750 hasPublicationYear "2023" @default.
- W4320521750 type Work @default.
- W4320521750 citedByCount "4" @default.
- W4320521750 countsByYear W43205217502023 @default.
- W4320521750 crossrefType "journal-article" @default.
- W4320521750 hasAuthorship W4320521750A5010785993 @default.
- W4320521750 hasAuthorship W4320521750A5023641370 @default.
- W4320521750 hasAuthorship W4320521750A5023999861 @default.
- W4320521750 hasAuthorship W4320521750A5040516603 @default.
- W4320521750 hasAuthorship W4320521750A5084292110 @default.
- W4320521750 hasConcept C119599485 @default.
- W4320521750 hasConcept C127413603 @default.
- W4320521750 hasConcept C130751788 @default.
- W4320521750 hasConcept C21880701 @default.
- W4320521750 hasConcept C2780165032 @default.
- W4320521750 hasConcept C39432304 @default.
- W4320521750 hasConcept C548081761 @default.
- W4320521750 hasConcept C87717796 @default.
- W4320521750 hasConcept C94061648 @default.
- W4320521750 hasConceptScore W4320521750C119599485 @default.
- W4320521750 hasConceptScore W4320521750C127413603 @default.
- W4320521750 hasConceptScore W4320521750C130751788 @default.
- W4320521750 hasConceptScore W4320521750C21880701 @default.
- W4320521750 hasConceptScore W4320521750C2780165032 @default.
- W4320521750 hasConceptScore W4320521750C39432304 @default.
- W4320521750 hasConceptScore W4320521750C548081761 @default.
- W4320521750 hasConceptScore W4320521750C87717796 @default.
- W4320521750 hasConceptScore W4320521750C94061648 @default.
- W4320521750 hasLocation W43205217501 @default.
- W4320521750 hasOpenAccess W4320521750 @default.
- W4320521750 hasPrimaryLocation W43205217501 @default.
- W4320521750 hasRelatedWork W1221512877 @default.
- W4320521750 hasRelatedWork W166629573 @default.
- W4320521750 hasRelatedWork W17500713 @default.
- W4320521750 hasRelatedWork W2017637916 @default.
- W4320521750 hasRelatedWork W2030016860 @default.
- W4320521750 hasRelatedWork W2032904806 @default.
- W4320521750 hasRelatedWork W2386922454 @default.
- W4320521750 hasRelatedWork W3201004249 @default.
- W4320521750 hasRelatedWork W63911168 @default.
- W4320521750 hasRelatedWork W641660632 @default.
- W4320521750 hasVolume "56" @default.
- W4320521750 isParatext "false" @default.
- W4320521750 isRetracted "false" @default.
- W4320521750 workType "article" @default.