Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320525696> ?p ?o ?g. }
- W4320525696 endingPage "280" @default.
- W4320525696 startingPage "257" @default.
- W4320525696 abstract "Quantifying the impacts of carbon prices on urban CO2 emissions is imperative to developing individualized carbon pricing schemes in China's emission trading systems (ETSs). Based on a prefecture-level panel dataset from 2005 to 2017, we use a machine learning approach to predict the individual price elasticities of CO2 emissions for 284 cities in China. The results exhibit significant heterogeneity in price elasticities: The full distribution of price elasticities indicates a right-skewed and leptokurtic characteristic, with an average price elasticity of −4.0 % and −3.6 % in CO2 emissions and CO2 intensity, respectively. We further find that the key city characteristics in predicting price elasticities are population density, industrial structure, and the number of industrial firms. Using the predictions of price elasticities, we conclude with a simulation to illustrate how different carbon pricing policies can help reduce carbon emissions at the national level. The results have important policy implications for China aiming to address low-carbon issues through carbon pricing." @default.
- W4320525696 created "2023-02-14" @default.
- W4320525696 creator A5015859185 @default.
- W4320525696 creator A5031519477 @default.
- W4320525696 creator A5048101049 @default.
- W4320525696 creator A5055242406 @default.
- W4320525696 date "2023-03-01" @default.
- W4320525696 modified "2023-09-24" @default.
- W4320525696 title "Price elasticity of CO2 emissions in China: A machine learning approach" @default.
- W4320525696 cites W2035581897 @default.
- W4320525696 cites W2060032353 @default.
- W4320525696 cites W2097093427 @default.
- W4320525696 cites W2099642588 @default.
- W4320525696 cites W2132917208 @default.
- W4320525696 cites W2134843796 @default.
- W4320525696 cites W2162159504 @default.
- W4320525696 cites W2208550830 @default.
- W4320525696 cites W2305754340 @default.
- W4320525696 cites W2510415425 @default.
- W4320525696 cites W2558107862 @default.
- W4320525696 cites W2570837382 @default.
- W4320525696 cites W2584212846 @default.
- W4320525696 cites W2593292374 @default.
- W4320525696 cites W2614303240 @default.
- W4320525696 cites W2620173312 @default.
- W4320525696 cites W2752882464 @default.
- W4320525696 cites W2793226986 @default.
- W4320525696 cites W2793361285 @default.
- W4320525696 cites W2794261166 @default.
- W4320525696 cites W2803776974 @default.
- W4320525696 cites W2803994889 @default.
- W4320525696 cites W2889872645 @default.
- W4320525696 cites W2903879086 @default.
- W4320525696 cites W2921748836 @default.
- W4320525696 cites W2922015808 @default.
- W4320525696 cites W2961876100 @default.
- W4320525696 cites W2962727190 @default.
- W4320525696 cites W2964365988 @default.
- W4320525696 cites W2971578311 @default.
- W4320525696 cites W2972301721 @default.
- W4320525696 cites W2988533513 @default.
- W4320525696 cites W2990350623 @default.
- W4320525696 cites W3012938095 @default.
- W4320525696 cites W3014509841 @default.
- W4320525696 cites W3032844175 @default.
- W4320525696 cites W3036199039 @default.
- W4320525696 cites W3043119625 @default.
- W4320525696 cites W3081275216 @default.
- W4320525696 cites W3094441520 @default.
- W4320525696 cites W3100991075 @default.
- W4320525696 cites W3102027041 @default.
- W4320525696 cites W3118647971 @default.
- W4320525696 cites W3121589630 @default.
- W4320525696 cites W3122637200 @default.
- W4320525696 cites W3122992882 @default.
- W4320525696 cites W3123102503 @default.
- W4320525696 cites W3123883781 @default.
- W4320525696 cites W3124999902 @default.
- W4320525696 cites W3126119665 @default.
- W4320525696 cites W3158582929 @default.
- W4320525696 cites W3163587252 @default.
- W4320525696 cites W3185332559 @default.
- W4320525696 cites W4200452078 @default.
- W4320525696 cites W4221079693 @default.
- W4320525696 cites W4224136676 @default.
- W4320525696 cites W4224287907 @default.
- W4320525696 doi "https://doi.org/10.1016/j.spc.2023.01.005" @default.
- W4320525696 hasPublicationYear "2023" @default.
- W4320525696 type Work @default.
- W4320525696 citedByCount "1" @default.
- W4320525696 countsByYear W43205256962023 @default.
- W4320525696 crossrefType "journal-article" @default.
- W4320525696 hasAuthorship W4320525696A5015859185 @default.
- W4320525696 hasAuthorship W4320525696A5031519477 @default.
- W4320525696 hasAuthorship W4320525696A5048101049 @default.
- W4320525696 hasAuthorship W4320525696A5055242406 @default.
- W4320525696 hasConcept C105795698 @default.
- W4320525696 hasConcept C121854251 @default.
- W4320525696 hasConcept C149782125 @default.
- W4320525696 hasConcept C159985019 @default.
- W4320525696 hasConcept C162324750 @default.
- W4320525696 hasConcept C166957645 @default.
- W4320525696 hasConcept C166963901 @default.
- W4320525696 hasConcept C175444787 @default.
- W4320525696 hasConcept C175605778 @default.
- W4320525696 hasConcept C18903297 @default.
- W4320525696 hasConcept C191935318 @default.
- W4320525696 hasConcept C192562407 @default.
- W4320525696 hasConcept C205649164 @default.
- W4320525696 hasConcept C2779200991 @default.
- W4320525696 hasConcept C33923547 @default.
- W4320525696 hasConcept C47737302 @default.
- W4320525696 hasConcept C51355593 @default.
- W4320525696 hasConcept C86803240 @default.
- W4320525696 hasConceptScore W4320525696C105795698 @default.
- W4320525696 hasConceptScore W4320525696C121854251 @default.
- W4320525696 hasConceptScore W4320525696C149782125 @default.
- W4320525696 hasConceptScore W4320525696C159985019 @default.