Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320526332> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4320526332 endingPage "211466" @default.
- W4320526332 startingPage "211466" @default.
- W4320526332 abstract "Precise estimation of the length of mixed oil is important to optimize the operation efficiency of products pipeline. The feasibility of physics models is limited by low accuracy or numerical simulation burden. The current frequentist predictive models require a sufficient number of historical samples, or they are easily encountered with over-fitting phenomenon. Bayesian linear regression model may alleviate this issue while predictive performance is also unsatisfactory without fusion of physical knowledge. To tackle such problems, this article proposes a new modeling method by employing the physics model to provide the nonlinear expression form and the underlying prior knowledge to the Bayesian linear regression model (BLR), and a physics-based Bayesian linear regression model (PBBLR) is developed. Based on the real product oil pipeline dataset, a performance comparison experiment with the Artificial Neural Network, the Gradient Boosting Decision Tree algorithm, two state-of-the-art predictive models, least squares estimation and pure Bayesian linear regression model is carried out, and the results verify the effectiveness of the proposed modeling method as the PBBLR shows optimal predictive performance in all scenarios. This research can help promote the predictive accuracy of mixed oil length of product oil pipelines and provide reference for the physics-data hybrid modeling method." @default.
- W4320526332 created "2023-02-14" @default.
- W4320526332 creator A5014001069 @default.
- W4320526332 creator A5042551057 @default.
- W4320526332 creator A5044416041 @default.
- W4320526332 creator A5044970157 @default.
- W4320526332 creator A5055099183 @default.
- W4320526332 creator A5090454827 @default.
- W4320526332 date "2023-04-01" @default.
- W4320526332 modified "2023-10-18" @default.
- W4320526332 title "Physics-based Bayesian linear regression model for predicting length of mixed oil" @default.
- W4320526332 cites W1985007429 @default.
- W4320526332 cites W1986730242 @default.
- W4320526332 cites W1991106858 @default.
- W4320526332 cites W2070461420 @default.
- W4320526332 cites W2088482564 @default.
- W4320526332 cites W2138975957 @default.
- W4320526332 cites W2319932114 @default.
- W4320526332 cites W2463821062 @default.
- W4320526332 cites W2888125058 @default.
- W4320526332 cites W2890579411 @default.
- W4320526332 cites W2895868598 @default.
- W4320526332 cites W2973726220 @default.
- W4320526332 cites W2990223215 @default.
- W4320526332 cites W3009820620 @default.
- W4320526332 cites W3010618570 @default.
- W4320526332 cites W3154474102 @default.
- W4320526332 cites W4200394217 @default.
- W4320526332 cites W4296204855 @default.
- W4320526332 cites W4296520626 @default.
- W4320526332 cites W4296905909 @default.
- W4320526332 cites W4297984849 @default.
- W4320526332 doi "https://doi.org/10.1016/j.geoen.2023.211466" @default.
- W4320526332 hasPublicationYear "2023" @default.
- W4320526332 type Work @default.
- W4320526332 citedByCount "2" @default.
- W4320526332 countsByYear W43205263322023 @default.
- W4320526332 crossrefType "journal-article" @default.
- W4320526332 hasAuthorship W4320526332A5014001069 @default.
- W4320526332 hasAuthorship W4320526332A5042551057 @default.
- W4320526332 hasAuthorship W4320526332A5044416041 @default.
- W4320526332 hasAuthorship W4320526332A5044970157 @default.
- W4320526332 hasAuthorship W4320526332A5055099183 @default.
- W4320526332 hasAuthorship W4320526332A5090454827 @default.
- W4320526332 hasConcept C107673813 @default.
- W4320526332 hasConcept C119857082 @default.
- W4320526332 hasConcept C124101348 @default.
- W4320526332 hasConcept C152877465 @default.
- W4320526332 hasConcept C154945302 @default.
- W4320526332 hasConcept C160234255 @default.
- W4320526332 hasConcept C162376815 @default.
- W4320526332 hasConcept C163175372 @default.
- W4320526332 hasConcept C199360897 @default.
- W4320526332 hasConcept C32224588 @default.
- W4320526332 hasConcept C37903108 @default.
- W4320526332 hasConcept C41008148 @default.
- W4320526332 hasConcept C43521106 @default.
- W4320526332 hasConcept C48921125 @default.
- W4320526332 hasConcept C50644808 @default.
- W4320526332 hasConcept C64946054 @default.
- W4320526332 hasConcept C71983512 @default.
- W4320526332 hasConcept C84525736 @default.
- W4320526332 hasConceptScore W4320526332C107673813 @default.
- W4320526332 hasConceptScore W4320526332C119857082 @default.
- W4320526332 hasConceptScore W4320526332C124101348 @default.
- W4320526332 hasConceptScore W4320526332C152877465 @default.
- W4320526332 hasConceptScore W4320526332C154945302 @default.
- W4320526332 hasConceptScore W4320526332C160234255 @default.
- W4320526332 hasConceptScore W4320526332C162376815 @default.
- W4320526332 hasConceptScore W4320526332C163175372 @default.
- W4320526332 hasConceptScore W4320526332C199360897 @default.
- W4320526332 hasConceptScore W4320526332C32224588 @default.
- W4320526332 hasConceptScore W4320526332C37903108 @default.
- W4320526332 hasConceptScore W4320526332C41008148 @default.
- W4320526332 hasConceptScore W4320526332C43521106 @default.
- W4320526332 hasConceptScore W4320526332C48921125 @default.
- W4320526332 hasConceptScore W4320526332C50644808 @default.
- W4320526332 hasConceptScore W4320526332C64946054 @default.
- W4320526332 hasConceptScore W4320526332C71983512 @default.
- W4320526332 hasConceptScore W4320526332C84525736 @default.
- W4320526332 hasLocation W43205263321 @default.
- W4320526332 hasOpenAccess W4320526332 @default.
- W4320526332 hasPrimaryLocation W43205263321 @default.
- W4320526332 hasRelatedWork W228771216 @default.
- W4320526332 hasRelatedWork W2358754556 @default.
- W4320526332 hasRelatedWork W2363843476 @default.
- W4320526332 hasRelatedWork W2396864609 @default.
- W4320526332 hasRelatedWork W2575365869 @default.
- W4320526332 hasRelatedWork W2604963692 @default.
- W4320526332 hasRelatedWork W3100117756 @default.
- W4320526332 hasRelatedWork W4235785230 @default.
- W4320526332 hasRelatedWork W4248534646 @default.
- W4320526332 hasRelatedWork W4281921183 @default.
- W4320526332 hasVolume "223" @default.
- W4320526332 isParatext "false" @default.
- W4320526332 isRetracted "false" @default.
- W4320526332 workType "article" @default.