Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320536030> ?p ?o ?g. }
- W4320536030 endingPage "105626" @default.
- W4320536030 startingPage "105626" @default.
- W4320536030 abstract "Australian irrigated cotton (Gossypium hirsutum L.) yields are among the highest in the world but may deplete soil nutrient reserves faster than in dryland systems. Little is known about changes in long-term micronutrient (Cu, Fe, Mn, Zn) concentrations in these systems. This study investigated changes in soil micronutrient concentrations over time in two long-term tillage and crop rotation experiments under furrow-irrigated cotton systems and a no-till dryland cropping enterprise. The tillage practices that were investigated were maximum (disc to 0.2 m, chisel ploughing to 0.3 m followed by the construction of beds in 1 m spacings) and minimum (mulching cotton residues, followed by root cutting, incorporation of cotton stalks and bed renovation with a disc-hiller) tillage. Soil samples were analysed for diethylenetriamine penta-acetic acid (DTPA) extractable micronutrients, x-ray fluorescence (XRF) total micronutrients, pH, and soil organic carbon (SOC). Both maximum and minimum tillage influenced topsoil distribution of DTPA-extractable Cu, Zn and Mn, with the greatest changes occurring in Mn concentration. Concentrations of Mn in the topsoil (0–0.15 m) during 2015 were higher than those in the subsoil (0.15–0.6 m) by 74 % with maximum tillage and 159 % with minimum tillage, suggesting greater stratification with the latter (28 mg kg−1 in topsoil vs 11 mg kg−1 in subsoil). Including wheat (Triticum aestivum L.) and maize (Zea mays L.) in cotton rotations increased DTPA-extractable Mn concentration. DTPA-extractable Mn was positively correlated with SOC in two experiments (P < 0.01) and DTPA Fe and pH were negatively correlated (P < 0.01). DTPA Zn concentrations under minimum-till cotton systems were stable over 18 years. DTPA Zn concentrations measured at 0.02 m increments suggested that soil below the fertiliser band depth (< 0.04 m) was potentially responsive to Zn application. Sampling in smaller depth increments in the topsoil (0.02 m increments in 0–0.1 m depth) more accurately identified micronutrient stratification and may improve management decisions when sowing. Our results indicated that managing soil pH and SOC in alkaline Vertisols under irrigated cotton systems was a more practical approach to address micronutrient availability than soil application of micronutrients. Future research should consider the implications of current agronomic practices in cotton production, such as the method and timing of nitrogen application as it influences changes in soil pH, which may impact micronutrient availability at critical crop growth stages." @default.
- W4320536030 created "2023-02-14" @default.
- W4320536030 creator A5026472444 @default.
- W4320536030 creator A5033927860 @default.
- W4320536030 creator A5055052762 @default.
- W4320536030 creator A5071924514 @default.
- W4320536030 date "2023-04-01" @default.
- W4320536030 modified "2023-09-27" @default.
- W4320536030 title "Changes in micronutrient concentrations under minimum tillage and cotton-based crop rotations in irrigated Vertisols" @default.
- W4320536030 cites W123290675 @default.
- W4320536030 cites W136427242 @default.
- W4320536030 cites W1499694192 @default.
- W4320536030 cites W1585098274 @default.
- W4320536030 cites W172839229 @default.
- W4320536030 cites W1984333434 @default.
- W4320536030 cites W1985226182 @default.
- W4320536030 cites W1986668058 @default.
- W4320536030 cites W1989683562 @default.
- W4320536030 cites W1990208551 @default.
- W4320536030 cites W1991009083 @default.
- W4320536030 cites W1991932700 @default.
- W4320536030 cites W1997286274 @default.
- W4320536030 cites W2009042619 @default.
- W4320536030 cites W2020249790 @default.
- W4320536030 cites W2020972941 @default.
- W4320536030 cites W2024065464 @default.
- W4320536030 cites W2030293932 @default.
- W4320536030 cites W2030979065 @default.
- W4320536030 cites W2037655782 @default.
- W4320536030 cites W2051014997 @default.
- W4320536030 cites W2060179096 @default.
- W4320536030 cites W2072898620 @default.
- W4320536030 cites W2073199530 @default.
- W4320536030 cites W2087434758 @default.
- W4320536030 cites W2090659675 @default.
- W4320536030 cites W2092401910 @default.
- W4320536030 cites W2095173125 @default.
- W4320536030 cites W2127170577 @default.
- W4320536030 cites W2129190166 @default.
- W4320536030 cites W2130256597 @default.
- W4320536030 cites W2136671279 @default.
- W4320536030 cites W2145955407 @default.
- W4320536030 cites W2163519213 @default.
- W4320536030 cites W2252455936 @default.
- W4320536030 cites W2326710230 @default.
- W4320536030 cites W2487282300 @default.
- W4320536030 cites W2767422083 @default.
- W4320536030 cites W2806610600 @default.
- W4320536030 cites W2883811637 @default.
- W4320536030 cites W2884696953 @default.
- W4320536030 cites W2904593766 @default.
- W4320536030 cites W2904866760 @default.
- W4320536030 cites W2904965681 @default.
- W4320536030 cites W2946980104 @default.
- W4320536030 cites W2949858028 @default.
- W4320536030 cites W2973635979 @default.
- W4320536030 cites W2991765562 @default.
- W4320536030 cites W3009255960 @default.
- W4320536030 cites W3045171483 @default.
- W4320536030 cites W3122132971 @default.
- W4320536030 cites W4212944640 @default.
- W4320536030 cites W4280607154 @default.
- W4320536030 cites W2008085525 @default.
- W4320536030 doi "https://doi.org/10.1016/j.still.2022.105626" @default.
- W4320536030 hasPublicationYear "2023" @default.
- W4320536030 type Work @default.
- W4320536030 citedByCount "0" @default.
- W4320536030 crossrefType "journal-article" @default.
- W4320536030 hasAuthorship W4320536030A5026472444 @default.
- W4320536030 hasAuthorship W4320536030A5033927860 @default.
- W4320536030 hasAuthorship W4320536030A5055052762 @default.
- W4320536030 hasAuthorship W4320536030A5071924514 @default.
- W4320536030 hasConcept C121923324 @default.
- W4320536030 hasConcept C14522933 @default.
- W4320536030 hasConcept C156634047 @default.
- W4320536030 hasConcept C159390177 @default.
- W4320536030 hasConcept C159750122 @default.
- W4320536030 hasConcept C16397148 @default.
- W4320536030 hasConcept C178790620 @default.
- W4320536030 hasConcept C185592680 @default.
- W4320536030 hasConcept C20529654 @default.
- W4320536030 hasConcept C2780696901 @default.
- W4320536030 hasConcept C37991615 @default.
- W4320536030 hasConcept C39432304 @default.
- W4320536030 hasConcept C6557445 @default.
- W4320536030 hasConcept C86803240 @default.
- W4320536030 hasConceptScore W4320536030C121923324 @default.
- W4320536030 hasConceptScore W4320536030C14522933 @default.
- W4320536030 hasConceptScore W4320536030C156634047 @default.
- W4320536030 hasConceptScore W4320536030C159390177 @default.
- W4320536030 hasConceptScore W4320536030C159750122 @default.
- W4320536030 hasConceptScore W4320536030C16397148 @default.
- W4320536030 hasConceptScore W4320536030C178790620 @default.
- W4320536030 hasConceptScore W4320536030C185592680 @default.
- W4320536030 hasConceptScore W4320536030C20529654 @default.
- W4320536030 hasConceptScore W4320536030C2780696901 @default.
- W4320536030 hasConceptScore W4320536030C37991615 @default.
- W4320536030 hasConceptScore W4320536030C39432304 @default.