Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320561102> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W4320561102 abstract "Theoretical interpretations of particle physics data, such as the determination of the Wilson coefficients of the Standard Model Effective Field Theory (SMEFT), often involve the inference of multiple parameters from a global dataset. Optimizing such interpretations requires the identification of observables that exhibit the highest possible sensitivity to the underlying theory parameters. In this work we develop a flexible open source framework, ML4EFT, enabling the integration of unbinned multivariate observables into global SMEFT fits. As compared to traditional measurements, such observables enhance the sensitivity to the theory parameters by preventing the information loss incurred when binning in a subset of final-state kinematic variables. Our strategy combines machine learning regression and classification techniques to parameterize high-dimensional likelihood ratios, using the Monte Carlo replica method to estimate and propagate methodological uncertainties. As a proof of concept we construct unbinned multivariate observables for top-quark pair and Higgs+$Z$ production at the LHC, demonstrate their impact on the SMEFT parameter space as compared to binned measurements, and study the improved constraints associated to multivariate inputs. Since the number of neural networks to be trained scales quadratically with the number of parameters and can be fully parallelized, the ML4EFT framework is well-suited to construct unbinned multivariate observables which depend on up to tens of EFT coefficients, as required in global fits." @default.
- W4320561102 created "2023-02-15" @default.
- W4320561102 creator A5009041224 @default.
- W4320561102 creator A5038153405 @default.
- W4320561102 creator A5047161303 @default.
- W4320561102 creator A5052939084 @default.
- W4320561102 creator A5083307537 @default.
- W4320561102 date "2022-11-03" @default.
- W4320561102 modified "2023-09-23" @default.
- W4320561102 title "Unbinned multivariate observables for global SMEFT analyses from machine learning" @default.
- W4320561102 doi "https://doi.org/10.48550/arxiv.2211.02058" @default.
- W4320561102 hasPublicationYear "2022" @default.
- W4320561102 type Work @default.
- W4320561102 citedByCount "0" @default.
- W4320561102 crossrefType "posted-content" @default.
- W4320561102 hasAuthorship W4320561102A5009041224 @default.
- W4320561102 hasAuthorship W4320561102A5038153405 @default.
- W4320561102 hasAuthorship W4320561102A5047161303 @default.
- W4320561102 hasAuthorship W4320561102A5052939084 @default.
- W4320561102 hasAuthorship W4320561102A5083307537 @default.
- W4320561102 hasConcept C109214941 @default.
- W4320561102 hasConcept C119857082 @default.
- W4320561102 hasConcept C121332964 @default.
- W4320561102 hasConcept C121864883 @default.
- W4320561102 hasConcept C154945302 @default.
- W4320561102 hasConcept C161584116 @default.
- W4320561102 hasConcept C163387558 @default.
- W4320561102 hasConcept C32848918 @default.
- W4320561102 hasConcept C33923547 @default.
- W4320561102 hasConcept C41008148 @default.
- W4320561102 hasConcept C62520636 @default.
- W4320561102 hasConceptScore W4320561102C109214941 @default.
- W4320561102 hasConceptScore W4320561102C119857082 @default.
- W4320561102 hasConceptScore W4320561102C121332964 @default.
- W4320561102 hasConceptScore W4320561102C121864883 @default.
- W4320561102 hasConceptScore W4320561102C154945302 @default.
- W4320561102 hasConceptScore W4320561102C161584116 @default.
- W4320561102 hasConceptScore W4320561102C163387558 @default.
- W4320561102 hasConceptScore W4320561102C32848918 @default.
- W4320561102 hasConceptScore W4320561102C33923547 @default.
- W4320561102 hasConceptScore W4320561102C41008148 @default.
- W4320561102 hasConceptScore W4320561102C62520636 @default.
- W4320561102 hasLocation W43205611021 @default.
- W4320561102 hasOpenAccess W4320561102 @default.
- W4320561102 hasPrimaryLocation W43205611021 @default.
- W4320561102 hasRelatedWork W1596115935 @default.
- W4320561102 hasRelatedWork W2094362741 @default.
- W4320561102 hasRelatedWork W2142769559 @default.
- W4320561102 hasRelatedWork W2179751020 @default.
- W4320561102 hasRelatedWork W2994803595 @default.
- W4320561102 hasRelatedWork W3022686021 @default.
- W4320561102 hasRelatedWork W3025728177 @default.
- W4320561102 hasRelatedWork W3103933703 @default.
- W4320561102 hasRelatedWork W3106333798 @default.
- W4320561102 hasRelatedWork W3170225468 @default.
- W4320561102 isParatext "false" @default.
- W4320561102 isRetracted "false" @default.
- W4320561102 workType "article" @default.