Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320623977> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W4320623977 abstract "Logging is a common practice in traditional software development. Several research works have been done to investigate the different characteristics of logging practices in traditional software systems (e.g., Android applications, JAVA applications, C/C++ applications). Nowadays, we are witnessing more and more development of Machine Learning-based applications (ML-based applications). Today, there are many popular libraries that facilitate and contribute to the development of such applications, among which we can mention: Pytorch, Tensorflow, Theano, MXNet, Scikit-Learn, Caffe, and Keras. Despite the popularity of ML, we don't have a clear understanding of logging practices in ML applications. In this paper, we aim to fill this knowledge gap and help ML practitioners understand the characteristics of logging in ML-based applications. In particular, we conduct an empirical study on 110 open-source ML-based applications. Through a quantitative analysis, we find that logging practice in ML-based applications is less pervasive than in traditional applications including Android, JAVA, and C/C++ applications. Furthermore, the majority of logging statements in ML-based applications are in info and warn levels, compared to traditional applications where info is the majority of logging statement in C/C++ application and debug, error levels constitute the majority of logging statement in Android application. We also perform a quantitative and qualitative analysis of a random sample of logging statements to understand where ML developers put most of logging statements and examine why and how they are using logging. These analyses led to the following observations: (i) ML developers put most of the logging statements in model training, and in non-ML components. (ii) Data and model management appear to be the main reason behind the introduction of logging statements in ML-based applications." @default.
- W4320623977 created "2023-02-15" @default.
- W4320623977 creator A5013795174 @default.
- W4320623977 creator A5024280538 @default.
- W4320623977 creator A5071052367 @default.
- W4320623977 date "2023-01-10" @default.
- W4320623977 modified "2023-09-29" @default.
- W4320623977 title "Studying Logging Practice in Machine Learning-based Applications" @default.
- W4320623977 doi "https://doi.org/10.48550/arxiv.2301.04234" @default.
- W4320623977 hasPublicationYear "2023" @default.
- W4320623977 type Work @default.
- W4320623977 citedByCount "0" @default.
- W4320623977 crossrefType "posted-content" @default.
- W4320623977 hasAuthorship W4320623977A5013795174 @default.
- W4320623977 hasAuthorship W4320623977A5024280538 @default.
- W4320623977 hasAuthorship W4320623977A5071052367 @default.
- W4320623977 hasBestOaLocation W43206239771 @default.
- W4320623977 hasConcept C111919701 @default.
- W4320623977 hasConcept C115903868 @default.
- W4320623977 hasConcept C125620115 @default.
- W4320623977 hasConcept C154945302 @default.
- W4320623977 hasConcept C15744967 @default.
- W4320623977 hasConcept C168065819 @default.
- W4320623977 hasConcept C18903297 @default.
- W4320623977 hasConcept C2522767166 @default.
- W4320623977 hasConcept C2777904410 @default.
- W4320623977 hasConcept C2780586970 @default.
- W4320623977 hasConcept C41008148 @default.
- W4320623977 hasConcept C548217200 @default.
- W4320623977 hasConcept C557433098 @default.
- W4320623977 hasConcept C77805123 @default.
- W4320623977 hasConcept C86803240 @default.
- W4320623977 hasConceptScore W4320623977C111919701 @default.
- W4320623977 hasConceptScore W4320623977C115903868 @default.
- W4320623977 hasConceptScore W4320623977C125620115 @default.
- W4320623977 hasConceptScore W4320623977C154945302 @default.
- W4320623977 hasConceptScore W4320623977C15744967 @default.
- W4320623977 hasConceptScore W4320623977C168065819 @default.
- W4320623977 hasConceptScore W4320623977C18903297 @default.
- W4320623977 hasConceptScore W4320623977C2522767166 @default.
- W4320623977 hasConceptScore W4320623977C2777904410 @default.
- W4320623977 hasConceptScore W4320623977C2780586970 @default.
- W4320623977 hasConceptScore W4320623977C41008148 @default.
- W4320623977 hasConceptScore W4320623977C548217200 @default.
- W4320623977 hasConceptScore W4320623977C557433098 @default.
- W4320623977 hasConceptScore W4320623977C77805123 @default.
- W4320623977 hasConceptScore W4320623977C86803240 @default.
- W4320623977 hasLocation W43206239771 @default.
- W4320623977 hasOpenAccess W4320623977 @default.
- W4320623977 hasPrimaryLocation W43206239771 @default.
- W4320623977 hasRelatedWork W1526989548 @default.
- W4320623977 hasRelatedWork W1608271177 @default.
- W4320623977 hasRelatedWork W172500986 @default.
- W4320623977 hasRelatedWork W2782942029 @default.
- W4320623977 hasRelatedWork W2890274422 @default.
- W4320623977 hasRelatedWork W3089832981 @default.
- W4320623977 hasRelatedWork W3134547809 @default.
- W4320623977 hasRelatedWork W3187332823 @default.
- W4320623977 hasRelatedWork W4221167106 @default.
- W4320623977 hasRelatedWork W4246882948 @default.
- W4320623977 isParatext "false" @default.
- W4320623977 isRetracted "false" @default.
- W4320623977 workType "article" @default.