Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320713025> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4320713025 endingPage "15953" @default.
- W4320713025 startingPage "15945" @default.
- W4320713025 abstract "Deep learning-based methods have become an active research area in medical imaging. Malaria is diagnosed by testing red blood cells. Deep learning methods can be used to distinguish malaria infected cell images from non-infected cell images. The small number of malaria dataset may limit the application of deep learning. Moreover, the infected area in the cell images is generally vague and small, requiring more complex models and a larger dataset to train on. Motivated by the tendency of humans to highlight important words when reading, we propose a simple neural network training strategy for highlighting the infected pixel regions that are mainly responsible for malaria cell classification. In our experiments on the NIH(National Institutes of Health) malaria dataset available in public domain, the proposed method significantly improved classification accuracy for our four different sized models, ranging from simple to complex including Resnet and Mobilenet. Our proposed method significantly improved classification accuracy. The result indicate that approach achieves a classification accuracy of 97.2%, compared to 94.49% for a baseline model. In addition, we demonstrate the superiority of the proposed strategy by providing an analysis on the magnitude of weight parameters in terms of regularization." @default.
- W4320713025 created "2023-02-15" @default.
- W4320713025 creator A5024636209 @default.
- W4320713025 creator A5031391781 @default.
- W4320713025 creator A5044020567 @default.
- W4320713025 date "2023-01-01" @default.
- W4320713025 modified "2023-10-18" @default.
- W4320713025 title "Malaria Disease Cell Classification With Highlighting Small Infected Regions" @default.
- W4320713025 cites W1529097724 @default.
- W4320713025 cites W2005909996 @default.
- W4320713025 cites W2014188930 @default.
- W4320713025 cites W2102535885 @default.
- W4320713025 cites W2122710056 @default.
- W4320713025 cites W2154658697 @default.
- W4320713025 cites W2169781650 @default.
- W4320713025 cites W2194775991 @default.
- W4320713025 cites W2316822582 @default.
- W4320713025 cites W2395579298 @default.
- W4320713025 cites W2473464331 @default.
- W4320713025 cites W2513544304 @default.
- W4320713025 cites W2604319603 @default.
- W4320713025 cites W2737592919 @default.
- W4320713025 cites W2783699776 @default.
- W4320713025 cites W2797694788 @default.
- W4320713025 cites W2799742832 @default.
- W4320713025 cites W2895574009 @default.
- W4320713025 cites W2903618910 @default.
- W4320713025 cites W2947946667 @default.
- W4320713025 cites W2973892008 @default.
- W4320713025 cites W3013305692 @default.
- W4320713025 cites W3088961722 @default.
- W4320713025 cites W3102638056 @default.
- W4320713025 cites W3173551454 @default.
- W4320713025 cites W3208624098 @default.
- W4320713025 cites W3213222106 @default.
- W4320713025 cites W4210473780 @default.
- W4320713025 cites W4210536454 @default.
- W4320713025 cites W4221077140 @default.
- W4320713025 cites W4281759312 @default.
- W4320713025 doi "https://doi.org/10.1109/access.2023.3245025" @default.
- W4320713025 hasPublicationYear "2023" @default.
- W4320713025 type Work @default.
- W4320713025 citedByCount "0" @default.
- W4320713025 crossrefType "journal-article" @default.
- W4320713025 hasAuthorship W4320713025A5024636209 @default.
- W4320713025 hasAuthorship W4320713025A5031391781 @default.
- W4320713025 hasAuthorship W4320713025A5044020567 @default.
- W4320713025 hasBestOaLocation W43207130251 @default.
- W4320713025 hasConcept C108583219 @default.
- W4320713025 hasConcept C119857082 @default.
- W4320713025 hasConcept C153180895 @default.
- W4320713025 hasConcept C154945302 @default.
- W4320713025 hasConcept C203014093 @default.
- W4320713025 hasConcept C2776135515 @default.
- W4320713025 hasConcept C2778048844 @default.
- W4320713025 hasConcept C2984842247 @default.
- W4320713025 hasConcept C41008148 @default.
- W4320713025 hasConcept C50644808 @default.
- W4320713025 hasConcept C71924100 @default.
- W4320713025 hasConceptScore W4320713025C108583219 @default.
- W4320713025 hasConceptScore W4320713025C119857082 @default.
- W4320713025 hasConceptScore W4320713025C153180895 @default.
- W4320713025 hasConceptScore W4320713025C154945302 @default.
- W4320713025 hasConceptScore W4320713025C203014093 @default.
- W4320713025 hasConceptScore W4320713025C2776135515 @default.
- W4320713025 hasConceptScore W4320713025C2778048844 @default.
- W4320713025 hasConceptScore W4320713025C2984842247 @default.
- W4320713025 hasConceptScore W4320713025C41008148 @default.
- W4320713025 hasConceptScore W4320713025C50644808 @default.
- W4320713025 hasConceptScore W4320713025C71924100 @default.
- W4320713025 hasFunder F4320321327 @default.
- W4320713025 hasLocation W43207130251 @default.
- W4320713025 hasOpenAccess W4320713025 @default.
- W4320713025 hasPrimaryLocation W43207130251 @default.
- W4320713025 hasRelatedWork W2795261237 @default.
- W4320713025 hasRelatedWork W3014300295 @default.
- W4320713025 hasRelatedWork W3164822677 @default.
- W4320713025 hasRelatedWork W4223943233 @default.
- W4320713025 hasRelatedWork W4225161397 @default.
- W4320713025 hasRelatedWork W4312200629 @default.
- W4320713025 hasRelatedWork W4360585206 @default.
- W4320713025 hasRelatedWork W4364306694 @default.
- W4320713025 hasRelatedWork W4380075502 @default.
- W4320713025 hasRelatedWork W4380086463 @default.
- W4320713025 hasVolume "11" @default.
- W4320713025 isParatext "false" @default.
- W4320713025 isRetracted "false" @default.
- W4320713025 workType "article" @default.