Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320713027> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4320713027 endingPage "17982" @default.
- W4320713027 startingPage "17968" @default.
- W4320713027 abstract "The 12-lead electrocardiogram (ECG) method can diagnose more cardiovascular disease than the single-lead method, but it is difficult to use in daily life because numerous electrodes must be attached to the body. As an aging society approaches, electrocardiography is expanding its use in daily life, even to the heart disease monitoring system for passengers in vehicles. This study proposes a single-lead ECG measurement system implemented in the steering wheel of the vehicle and a machine learning model to classify the driver’s heart health status. For the ECG measurement system, an algorithm to obtain stable ECG signals is proposed along with the measurement hardware. It uses the range and interval of the ECG signal to determine stability under noisy conditions caused by vehicle vibration and the driver movement. To classify four classes of heart diseases (normal, atrial fibrillation, other rhythms, noise), a two-stage machine learning structure is proposed. To train the machine learning models with an optimal feature subset, 188 features were extracted from the single-lead ECG dataset, and a sequential wrapper-type feature selection was conducted. As a result, when the naïve Bayes model using ten features was located in the first step and the support vector machine using 13 features in the second step, the proposed two-stage classification structure returned the best score <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>F</i> 1 <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><i>NAO</i></sub> = 0.7898 and real-time classification performances (0.86 seconds on average)." @default.
- W4320713027 created "2023-02-15" @default.
- W4320713027 creator A5039663424 @default.
- W4320713027 creator A5058319626 @default.
- W4320713027 date "2023-01-01" @default.
- W4320713027 modified "2023-10-06" @default.
- W4320713027 title "ECG Measurement System for Vehicle Implementation and Heart Disease Classification Using Machine Learning" @default.
- W4320713027 cites W1862394037 @default.
- W4320713027 cites W1908105620 @default.
- W4320713027 cites W1992397369 @default.
- W4320713027 cites W1997785567 @default.
- W4320713027 cites W2012882079 @default.
- W4320713027 cites W2023233510 @default.
- W4320713027 cites W2027774888 @default.
- W4320713027 cites W2067884148 @default.
- W4320713027 cites W2108000303 @default.
- W4320713027 cites W2109692256 @default.
- W4320713027 cites W2141040858 @default.
- W4320713027 cites W2141394518 @default.
- W4320713027 cites W2152318928 @default.
- W4320713027 cites W2155103273 @default.
- W4320713027 cites W2162273778 @default.
- W4320713027 cites W2162800060 @default.
- W4320713027 cites W2167162173 @default.
- W4320713027 cites W2169316412 @default.
- W4320713027 cites W2289105867 @default.
- W4320713027 cites W2303689812 @default.
- W4320713027 cites W2488222617 @default.
- W4320713027 cites W2519598732 @default.
- W4320713027 cites W2594557222 @default.
- W4320713027 cites W2766746225 @default.
- W4320713027 cites W2767978081 @default.
- W4320713027 cites W2805227459 @default.
- W4320713027 cites W2886466686 @default.
- W4320713027 cites W2901956291 @default.
- W4320713027 cites W2909867993 @default.
- W4320713027 cites W2977636290 @default.
- W4320713027 cites W3085600237 @default.
- W4320713027 cites W3152753009 @default.
- W4320713027 cites W3184230296 @default.
- W4320713027 cites W4225576041 @default.
- W4320713027 cites W4285391973 @default.
- W4320713027 doi "https://doi.org/10.1109/access.2023.3245565" @default.
- W4320713027 hasPublicationYear "2023" @default.
- W4320713027 type Work @default.
- W4320713027 citedByCount "0" @default.
- W4320713027 crossrefType "journal-article" @default.
- W4320713027 hasAuthorship W4320713027A5039663424 @default.
- W4320713027 hasAuthorship W4320713027A5058319626 @default.
- W4320713027 hasBestOaLocation W43207130271 @default.
- W4320713027 hasConcept C110083411 @default.
- W4320713027 hasConcept C112972136 @default.
- W4320713027 hasConcept C115961682 @default.
- W4320713027 hasConcept C119857082 @default.
- W4320713027 hasConcept C12267149 @default.
- W4320713027 hasConcept C138885662 @default.
- W4320713027 hasConcept C148483581 @default.
- W4320713027 hasConcept C153180895 @default.
- W4320713027 hasConcept C154945302 @default.
- W4320713027 hasConcept C2776401178 @default.
- W4320713027 hasConcept C41008148 @default.
- W4320713027 hasConcept C41895202 @default.
- W4320713027 hasConcept C52001869 @default.
- W4320713027 hasConcept C52622490 @default.
- W4320713027 hasConcept C99498987 @default.
- W4320713027 hasConceptScore W4320713027C110083411 @default.
- W4320713027 hasConceptScore W4320713027C112972136 @default.
- W4320713027 hasConceptScore W4320713027C115961682 @default.
- W4320713027 hasConceptScore W4320713027C119857082 @default.
- W4320713027 hasConceptScore W4320713027C12267149 @default.
- W4320713027 hasConceptScore W4320713027C138885662 @default.
- W4320713027 hasConceptScore W4320713027C148483581 @default.
- W4320713027 hasConceptScore W4320713027C153180895 @default.
- W4320713027 hasConceptScore W4320713027C154945302 @default.
- W4320713027 hasConceptScore W4320713027C2776401178 @default.
- W4320713027 hasConceptScore W4320713027C41008148 @default.
- W4320713027 hasConceptScore W4320713027C41895202 @default.
- W4320713027 hasConceptScore W4320713027C52001869 @default.
- W4320713027 hasConceptScore W4320713027C52622490 @default.
- W4320713027 hasConceptScore W4320713027C99498987 @default.
- W4320713027 hasFunder F4320328359 @default.
- W4320713027 hasLocation W43207130271 @default.
- W4320713027 hasOpenAccess W4320713027 @default.
- W4320713027 hasPrimaryLocation W43207130271 @default.
- W4320713027 hasRelatedWork W2336974148 @default.
- W4320713027 hasRelatedWork W2546942002 @default.
- W4320713027 hasRelatedWork W2985924212 @default.
- W4320713027 hasRelatedWork W3094673542 @default.
- W4320713027 hasRelatedWork W3186233728 @default.
- W4320713027 hasRelatedWork W3210877509 @default.
- W4320713027 hasRelatedWork W4200203568 @default.
- W4320713027 hasRelatedWork W4361733514 @default.
- W4320713027 hasRelatedWork W4377964522 @default.
- W4320713027 hasRelatedWork W2345184372 @default.
- W4320713027 hasVolume "11" @default.
- W4320713027 isParatext "false" @default.
- W4320713027 isRetracted "false" @default.
- W4320713027 workType "article" @default.