Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320716833> ?p ?o ?g. }
- W4320716833 endingPage "2509" @default.
- W4320716833 startingPage "2498" @default.
- W4320716833 abstract "Precision livestock farming (PLF) technologies have been widely promoted as important tools to improve the sustainability of dairy systems due to perceived economic, social, and environmental benefits. However, there is still limited information about the level of adoption of PLF technologies (percentage of farms with a PLF technology) and the factors (farm and farmer characteristics) associated with PLF technology adoption in pasture-based dairy systems. The current research aimed to address this knowledge gap by using a representative survey of Irish pasture-based dairy farms from 2018. First, we established the levels of adoption of 9 PLF technologies (individual cow activity sensors, rising plate meters, automatic washers, automatic cluster removers, automatic calf feeders, automatic parlor feeders, automatic drafting gates, milk meters, and a grassland management decision-support tool) and grouped them into 4 PLF technology clusters according to the level of association with each other and the area of dairy farm management in which they are used. The PLF technology clusters were reproductive management technologies, grass management technologies, milking management technologies, and calf management technologies. Additionally, we classified farms into 3 categories of intensity of technology adoption based on the number of PLF technologies they have adopted (nonadoption, low intensity of adoption, and high intensity of adoption). Second, we determined the factors associated with the intensity of technology adoption and with the adoption of the PLF technology clusters. A multinomial logistic regression model and 4 logistic regressions were used to determine the factors associated with intensity of adoption (low and high intensity of adoption compared with nonadoption) and with the adoption of the 4 PLF technology clusters, respectively. Adoption levels varied depending on PLF technology, with the most adopted PLF technologies being those related to the milking process (e.g., automatic parlor feeders and milk meters). The results of the multinomial logistic regression suggest that herd size, proportion of hired labor, agricultural education, and discussion group membership were positively associated with a high intensity of adoption, whereas age of farmer and number of household members were negatively associated with high intensity of adoption. However, when analyzing PLF technology clusters, the magnitude and direction of the influence of the factors in technology adoption varied depending on the PLF technology cluster being investigated. By identifying the PLF technologies in which pasture-based dairy farmers are investing more and by detecting potential drivers and barriers for the adoption of PLF technologies, the current study could allow PLF technology companies, practitioners, and researchers to develop and target strategies that improve future adoption of PLF technologies in pasture-based dairy settings." @default.
- W4320716833 created "2023-02-15" @default.
- W4320716833 creator A5019155513 @default.
- W4320716833 creator A5021283848 @default.
- W4320716833 creator A5022785581 @default.
- W4320716833 creator A5039360885 @default.
- W4320716833 creator A5047258899 @default.
- W4320716833 creator A5049297472 @default.
- W4320716833 creator A5052939624 @default.
- W4320716833 date "2023-04-01" @default.
- W4320716833 modified "2023-10-14" @default.
- W4320716833 title "Factors associated with intensity of technology adoption and with the adoption of 4 clusters of precision livestock farming technologies in Irish pasture-based dairy systems" @default.
- W4320716833 cites W1518534567 @default.
- W4320716833 cites W1981822249 @default.
- W4320716833 cites W1996641038 @default.
- W4320716833 cites W2004425394 @default.
- W4320716833 cites W2039401961 @default.
- W4320716833 cites W2052772815 @default.
- W4320716833 cites W2091145344 @default.
- W4320716833 cites W2156637045 @default.
- W4320716833 cites W2524584798 @default.
- W4320716833 cites W2789752908 @default.
- W4320716833 cites W2791955170 @default.
- W4320716833 cites W2883037693 @default.
- W4320716833 cites W2914305340 @default.
- W4320716833 cites W2940504074 @default.
- W4320716833 cites W3005507915 @default.
- W4320716833 cites W3007971239 @default.
- W4320716833 cites W3014322204 @default.
- W4320716833 cites W3019894198 @default.
- W4320716833 cites W3036027365 @default.
- W4320716833 cites W3095642972 @default.
- W4320716833 doi "https://doi.org/10.3168/jds.2021-21503" @default.
- W4320716833 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36797180" @default.
- W4320716833 hasPublicationYear "2023" @default.
- W4320716833 type Work @default.
- W4320716833 citedByCount "2" @default.
- W4320716833 countsByYear W43207168332023 @default.
- W4320716833 crossrefType "journal-article" @default.
- W4320716833 hasAuthorship W4320716833A5019155513 @default.
- W4320716833 hasAuthorship W4320716833A5021283848 @default.
- W4320716833 hasAuthorship W4320716833A5022785581 @default.
- W4320716833 hasAuthorship W4320716833A5039360885 @default.
- W4320716833 hasAuthorship W4320716833A5047258899 @default.
- W4320716833 hasAuthorship W4320716833A5049297472 @default.
- W4320716833 hasAuthorship W4320716833A5052939624 @default.
- W4320716833 hasBestOaLocation W43207168331 @default.
- W4320716833 hasConcept C105795698 @default.
- W4320716833 hasConcept C107826830 @default.
- W4320716833 hasConcept C112964050 @default.
- W4320716833 hasConcept C117568660 @default.
- W4320716833 hasConcept C118518473 @default.
- W4320716833 hasConcept C120217122 @default.
- W4320716833 hasConcept C139719470 @default.
- W4320716833 hasConcept C140793950 @default.
- W4320716833 hasConcept C144133560 @default.
- W4320716833 hasConcept C151956035 @default.
- W4320716833 hasConcept C162324750 @default.
- W4320716833 hasConcept C164866538 @default.
- W4320716833 hasConcept C18903297 @default.
- W4320716833 hasConcept C199360897 @default.
- W4320716833 hasConcept C22641795 @default.
- W4320716833 hasConcept C2776659692 @default.
- W4320716833 hasConcept C2777904157 @default.
- W4320716833 hasConcept C2778053677 @default.
- W4320716833 hasConcept C2778348673 @default.
- W4320716833 hasConcept C2778691696 @default.
- W4320716833 hasConcept C2779234561 @default.
- W4320716833 hasConcept C2779885849 @default.
- W4320716833 hasConcept C2780042802 @default.
- W4320716833 hasConcept C33923547 @default.
- W4320716833 hasConcept C37621935 @default.
- W4320716833 hasConcept C39432304 @default.
- W4320716833 hasConcept C41008148 @default.
- W4320716833 hasConcept C48824518 @default.
- W4320716833 hasConcept C54355233 @default.
- W4320716833 hasConcept C6557445 @default.
- W4320716833 hasConcept C66204764 @default.
- W4320716833 hasConcept C86803240 @default.
- W4320716833 hasConceptScore W4320716833C105795698 @default.
- W4320716833 hasConceptScore W4320716833C107826830 @default.
- W4320716833 hasConceptScore W4320716833C112964050 @default.
- W4320716833 hasConceptScore W4320716833C117568660 @default.
- W4320716833 hasConceptScore W4320716833C118518473 @default.
- W4320716833 hasConceptScore W4320716833C120217122 @default.
- W4320716833 hasConceptScore W4320716833C139719470 @default.
- W4320716833 hasConceptScore W4320716833C140793950 @default.
- W4320716833 hasConceptScore W4320716833C144133560 @default.
- W4320716833 hasConceptScore W4320716833C151956035 @default.
- W4320716833 hasConceptScore W4320716833C162324750 @default.
- W4320716833 hasConceptScore W4320716833C164866538 @default.
- W4320716833 hasConceptScore W4320716833C18903297 @default.
- W4320716833 hasConceptScore W4320716833C199360897 @default.
- W4320716833 hasConceptScore W4320716833C22641795 @default.
- W4320716833 hasConceptScore W4320716833C2776659692 @default.
- W4320716833 hasConceptScore W4320716833C2777904157 @default.
- W4320716833 hasConceptScore W4320716833C2778053677 @default.
- W4320716833 hasConceptScore W4320716833C2778348673 @default.