Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320717191> ?p ?o ?g. }
- W4320717191 endingPage "552" @default.
- W4320717191 startingPage "541" @default.
- W4320717191 abstract "Apis mellifera royal jelly (RJ) is a well-known remedy in traditional medicine around the world and its versatile effects range from antibacterial to anti-inflammatory properties and pro-regenerative properties. As a glandular product, RJ has been shown to contain a substantial number of extracellular vesicles (EVs), and, in this study, we aimed to investigate the extent of involvement of RJEVs in wound healing-associated effects. Molecular analysis of RJEVs verified the presence of exosomal markers such as CD63 and syntenin, and cargo molecules MRJP1, defensin-1, and jellein-3. Furthermore, RJEVs were demonstrated to modulate mesenchymal stem cell (MSC) differentiation and secretome, as well as decrease LPS-induced inflammation in macrophages by blocking the mitogen-activated protein kinase (MAPK) pathway. In vivo studies confirmed antibacterial effects of RJEVs and demonstrated an acceleration of wound healing in a splinted mouse model. This study suggests that RJEVs play a crucial role in the known effects of RJ by modulating the inflammatory phase and cellular response in wound healing. Transfer of RJ into the clinics has been impeded by the high complexity of the raw material. Isolating EVs from the raw RJ decreases the complexity while allowing standardization and quality control, bringing a natural nano-therapy one step closer to the clinics. Apis mellifera royal jelly (RJ) is a well-known remedy in traditional medicine around the world and its versatile effects range from antibacterial to anti-inflammatory properties and pro-regenerative properties. As a glandular product, RJ has been shown to contain a substantial number of extracellular vesicles (EVs), and, in this study, we aimed to investigate the extent of involvement of RJEVs in wound healing-associated effects. Molecular analysis of RJEVs verified the presence of exosomal markers such as CD63 and syntenin, and cargo molecules MRJP1, defensin-1, and jellein-3. Furthermore, RJEVs were demonstrated to modulate mesenchymal stem cell (MSC) differentiation and secretome, as well as decrease LPS-induced inflammation in macrophages by blocking the mitogen-activated protein kinase (MAPK) pathway. In vivo studies confirmed antibacterial effects of RJEVs and demonstrated an acceleration of wound healing in a splinted mouse model. This study suggests that RJEVs play a crucial role in the known effects of RJ by modulating the inflammatory phase and cellular response in wound healing. Transfer of RJ into the clinics has been impeded by the high complexity of the raw material. Isolating EVs from the raw RJ decreases the complexity while allowing standardization and quality control, bringing a natural nano-therapy one step closer to the clinics." @default.
- W4320717191 created "2023-02-15" @default.
- W4320717191 creator A5000861750 @default.
- W4320717191 creator A5016671237 @default.
- W4320717191 creator A5030399138 @default.
- W4320717191 creator A5030688058 @default.
- W4320717191 creator A5034703751 @default.
- W4320717191 creator A5035386069 @default.
- W4320717191 creator A5052909260 @default.
- W4320717191 creator A5062923553 @default.
- W4320717191 creator A5068184900 @default.
- W4320717191 creator A5076742056 @default.
- W4320717191 date "2023-03-01" @default.
- W4320717191 modified "2023-10-17" @default.
- W4320717191 title "Royal jelly extracellular vesicles promote wound healing by modulating underlying cellular responses" @default.
- W4320717191 cites W1515010604 @default.
- W4320717191 cites W1529075884 @default.
- W4320717191 cites W1974116391 @default.
- W4320717191 cites W1989021193 @default.
- W4320717191 cites W1989762720 @default.
- W4320717191 cites W1998090585 @default.
- W4320717191 cites W2004394057 @default.
- W4320717191 cites W2011161064 @default.
- W4320717191 cites W2012807312 @default.
- W4320717191 cites W2014670270 @default.
- W4320717191 cites W2019602462 @default.
- W4320717191 cites W2021300502 @default.
- W4320717191 cites W2027997722 @default.
- W4320717191 cites W2029907535 @default.
- W4320717191 cites W2031663540 @default.
- W4320717191 cites W2036728920 @default.
- W4320717191 cites W2037618281 @default.
- W4320717191 cites W2039539873 @default.
- W4320717191 cites W2055313665 @default.
- W4320717191 cites W2057685451 @default.
- W4320717191 cites W2058964758 @default.
- W4320717191 cites W2067092329 @default.
- W4320717191 cites W2079915654 @default.
- W4320717191 cites W2086814327 @default.
- W4320717191 cites W2087909167 @default.
- W4320717191 cites W2102309585 @default.
- W4320717191 cites W2121354606 @default.
- W4320717191 cites W2127944972 @default.
- W4320717191 cites W2155366992 @default.
- W4320717191 cites W2286874251 @default.
- W4320717191 cites W2313349909 @default.
- W4320717191 cites W2325280034 @default.
- W4320717191 cites W2356244114 @default.
- W4320717191 cites W2395003662 @default.
- W4320717191 cites W2402202411 @default.
- W4320717191 cites W2467179186 @default.
- W4320717191 cites W2539266343 @default.
- W4320717191 cites W2737699784 @default.
- W4320717191 cites W2740584211 @default.
- W4320717191 cites W2747825635 @default.
- W4320717191 cites W2789283929 @default.
- W4320717191 cites W2795525763 @default.
- W4320717191 cites W2801019264 @default.
- W4320717191 cites W2901232966 @default.
- W4320717191 cites W2915715948 @default.
- W4320717191 cites W2925620317 @default.
- W4320717191 cites W2953748462 @default.
- W4320717191 cites W2968935972 @default.
- W4320717191 cites W2973784102 @default.
- W4320717191 cites W2976512810 @default.
- W4320717191 cites W3045283786 @default.
- W4320717191 cites W3084936186 @default.
- W4320717191 cites W3110071756 @default.
- W4320717191 cites W3166799293 @default.
- W4320717191 cites W3186054516 @default.
- W4320717191 cites W4225133083 @default.
- W4320717191 doi "https://doi.org/10.1016/j.omtn.2023.02.008" @default.
- W4320717191 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36895953" @default.
- W4320717191 hasPublicationYear "2023" @default.
- W4320717191 type Work @default.
- W4320717191 citedByCount "5" @default.
- W4320717191 countsByYear W43207171912023 @default.
- W4320717191 crossrefType "journal-article" @default.
- W4320717191 hasAuthorship W4320717191A5000861750 @default.
- W4320717191 hasAuthorship W4320717191A5016671237 @default.
- W4320717191 hasAuthorship W4320717191A5030399138 @default.
- W4320717191 hasAuthorship W4320717191A5030688058 @default.
- W4320717191 hasAuthorship W4320717191A5034703751 @default.
- W4320717191 hasAuthorship W4320717191A5035386069 @default.
- W4320717191 hasAuthorship W4320717191A5052909260 @default.
- W4320717191 hasAuthorship W4320717191A5062923553 @default.
- W4320717191 hasAuthorship W4320717191A5068184900 @default.
- W4320717191 hasAuthorship W4320717191A5076742056 @default.
- W4320717191 hasBestOaLocation W43207171911 @default.
- W4320717191 hasConcept C10854531 @default.
- W4320717191 hasConcept C119577978 @default.
- W4320717191 hasConcept C150903083 @default.
- W4320717191 hasConcept C184235292 @default.
- W4320717191 hasConcept C185592680 @default.
- W4320717191 hasConcept C198826908 @default.
- W4320717191 hasConcept C203014093 @default.
- W4320717191 hasConcept C207001950 @default.
- W4320717191 hasConcept C2776914184 @default.