Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320719694> ?p ?o ?g. }
- W4320719694 abstract "Atrial fibrillation (AF) is the most common cardiac arrhythmia, and its early detection is critical for preventing complications and optimizing treatment. In this study, a novel AF prediction method is proposed, which is based on investigating a subset of the 12-lead ECG data using a recurrent plot and ParNet-adv model. The minimal subset of ECG leads (II &V1) is determined via a forward stepwise selection procedure, and the selected 1D ECG data is transformed into 2D recurrence plot (RP) images as an input to train a shallow ParNet-adv Network for AF prediction. In this study, the proposed method achieved F1 score of 0.9763, Precision of 0.9654, Recall of 0.9875, Specificity of 0.9646, and Accuracy of 0.9760, which significantly outperformed solutions based on single leads and complete 12 leads. When studying several ECG datasets, including the CPSC and Georgia ECG databases of the PhysioNet/Computing in Cardiology Challenge 2020, the new method achieved F1 score of 0.9693 and 0.8660, respectively. The results suggested a good generalization of the proposed method. Compared with several state-of-art frameworks, the proposed model with a shallow network of only 12 depths and asymmetric convolutions achieved the highest average F1 score. Extensive experimental studies proved that the proposed method has a high potential for AF prediction in clinical and particularly wearable applications." @default.
- W4320719694 created "2023-02-15" @default.
- W4320719694 creator A5002543910 @default.
- W4320719694 creator A5005625546 @default.
- W4320719694 creator A5007360219 @default.
- W4320719694 creator A5031763255 @default.
- W4320719694 creator A5053511345 @default.
- W4320719694 creator A5056450584 @default.
- W4320719694 creator A5060470951 @default.
- W4320719694 creator A5071986802 @default.
- W4320719694 creator A5073240631 @default.
- W4320719694 creator A5073559766 @default.
- W4320719694 creator A5074122776 @default.
- W4320719694 date "2023-02-14" @default.
- W4320719694 modified "2023-09-28" @default.
- W4320719694 title "Atrial fibrillation classification based on the 2D representation of minimal subset ECG and a non-deep neural network" @default.
- W4320719694 cites W1519475355 @default.
- W4320719694 cites W1549386224 @default.
- W4320719694 cites W2013074517 @default.
- W4320719694 cites W2094144838 @default.
- W4320719694 cites W2099593264 @default.
- W4320719694 cites W2101331317 @default.
- W4320719694 cites W2156340241 @default.
- W4320719694 cites W2156651377 @default.
- W4320719694 cites W2166511519 @default.
- W4320719694 cites W2296343934 @default.
- W4320719694 cites W2338162851 @default.
- W4320719694 cites W2487770199 @default.
- W4320719694 cites W2793153907 @default.
- W4320719694 cites W2794550444 @default.
- W4320719694 cites W2808297418 @default.
- W4320719694 cites W2883914442 @default.
- W4320719694 cites W2884579557 @default.
- W4320719694 cites W2888456553 @default.
- W4320719694 cites W2899297343 @default.
- W4320719694 cites W2901678325 @default.
- W4320719694 cites W2902644322 @default.
- W4320719694 cites W2903434143 @default.
- W4320719694 cites W2953193031 @default.
- W4320719694 cites W2963304300 @default.
- W4320719694 cites W2964350391 @default.
- W4320719694 cites W2965307660 @default.
- W4320719694 cites W2972905773 @default.
- W4320719694 cites W2984759351 @default.
- W4320719694 cites W2987985090 @default.
- W4320719694 cites W2998806191 @default.
- W4320719694 cites W3000776376 @default.
- W4320719694 cites W3001838300 @default.
- W4320719694 cites W3004728047 @default.
- W4320719694 cites W3005487465 @default.
- W4320719694 cites W3008167346 @default.
- W4320719694 cites W3027572331 @default.
- W4320719694 cites W3082188176 @default.
- W4320719694 cites W3091163967 @default.
- W4320719694 cites W3093699748 @default.
- W4320719694 cites W3097305924 @default.
- W4320719694 cites W3098699929 @default.
- W4320719694 cites W3099085560 @default.
- W4320719694 cites W3156215970 @default.
- W4320719694 cites W3161273030 @default.
- W4320719694 cites W3208277681 @default.
- W4320719694 cites W3211729376 @default.
- W4320719694 cites W3214607772 @default.
- W4320719694 cites W4206472861 @default.
- W4320719694 cites W4226100027 @default.
- W4320719694 cites W4280560333 @default.
- W4320719694 cites W4282932578 @default.
- W4320719694 doi "https://doi.org/10.3389/fphys.2023.1070621" @default.
- W4320719694 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36866172" @default.
- W4320719694 hasPublicationYear "2023" @default.
- W4320719694 type Work @default.
- W4320719694 citedByCount "1" @default.
- W4320719694 countsByYear W43207196942023 @default.
- W4320719694 crossrefType "journal-article" @default.
- W4320719694 hasAuthorship W4320719694A5002543910 @default.
- W4320719694 hasAuthorship W4320719694A5005625546 @default.
- W4320719694 hasAuthorship W4320719694A5007360219 @default.
- W4320719694 hasAuthorship W4320719694A5031763255 @default.
- W4320719694 hasAuthorship W4320719694A5053511345 @default.
- W4320719694 hasAuthorship W4320719694A5056450584 @default.
- W4320719694 hasAuthorship W4320719694A5060470951 @default.
- W4320719694 hasAuthorship W4320719694A5071986802 @default.
- W4320719694 hasAuthorship W4320719694A5073240631 @default.
- W4320719694 hasAuthorship W4320719694A5073559766 @default.
- W4320719694 hasAuthorship W4320719694A5074122776 @default.
- W4320719694 hasBestOaLocation W43207196941 @default.
- W4320719694 hasConcept C126322002 @default.
- W4320719694 hasConcept C134306372 @default.
- W4320719694 hasConcept C148524875 @default.
- W4320719694 hasConcept C153180895 @default.
- W4320719694 hasConcept C154945302 @default.
- W4320719694 hasConcept C164705383 @default.
- W4320719694 hasConcept C177148314 @default.
- W4320719694 hasConcept C2779161974 @default.
- W4320719694 hasConcept C33923547 @default.
- W4320719694 hasConcept C41008148 @default.
- W4320719694 hasConcept C50644808 @default.
- W4320719694 hasConcept C71924100 @default.
- W4320719694 hasConceptScore W4320719694C126322002 @default.
- W4320719694 hasConceptScore W4320719694C134306372 @default.