Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320719776> ?p ?o ?g. }
- W4320719776 endingPage "116" @default.
- W4320719776 startingPage "107" @default.
- W4320719776 abstract "Aflatoxin poisoning can harm broiler health and cause economic loss. Traditional diagnoses rely on human assessment, which is laborious and time-consuming. The objective of this study was to identify aflatoxin-poisoned broilers by analyzing three-dimensional accelerations collected by wearable accelerometers using five machine learning models, including K-Nearest Neighbor (KNN), Support Vector Classification (SVC), Decision Tree (DT), Random Forest (RF), and Gradient Boosting Decision Tree (GBDT). A total of 75 yellow feather broilers were reared in 3 pens (25 birds/pen) provided with 3 types of feed, including Normal (no Aflatoxin B1, control), AF50 (50 μg/kg Aflatoxin B1 “AFB1”), and AF100 (100 μg/kg AFB1). Lightweight tri-axial accelerometers were attached to 9 randomly selected birds (3 birds/pen) to continuously monitor the movement of broilers. Broiler behaviors were manually labelled as six categorises (sitting, standing, drinking, feeding, walking, and other) by observing the videos recorded by the camera installed in each pen. Different behavioral patterns were observed for AFB1 poisoned birds as compared to that for sound birds. The poisoned broilers performed less standing, walking, feeding, and drinking behaviors, but more sitting behaviors. Five models could identify poisoned birds (AF100) with good accuracies (>86%). Higher misclassification rates were observed for all models in classifying AF50 and Normal groups. Among different models, the GBDT model performed best (97%) in differentiating Normal and AF50 broilers. In conclusion, three-dimensional accelerations and machine learning models could be used to identify aflatoxin-poisoned broilers with high accuracies. The findings could help in the development of viable systems that can identify diseased birds." @default.
- W4320719776 created "2023-02-15" @default.
- W4320719776 creator A5015893806 @default.
- W4320719776 creator A5026250307 @default.
- W4320719776 creator A5030771482 @default.
- W4320719776 creator A5042579643 @default.
- W4320719776 creator A5057176376 @default.
- W4320719776 creator A5084907853 @default.
- W4320719776 date "2023-03-01" @default.
- W4320719776 modified "2023-10-16" @default.
- W4320719776 title "Identification of aflatoxin-poisoned broilers based on accelerometer and machine learning" @default.
- W4320719776 cites W1947481210 @default.
- W4320719776 cites W1967034764 @default.
- W4320719776 cites W1991513993 @default.
- W4320719776 cites W2006110902 @default.
- W4320719776 cites W2019451007 @default.
- W4320719776 cites W2024341973 @default.
- W4320719776 cites W2056221673 @default.
- W4320719776 cites W2056558089 @default.
- W4320719776 cites W2105934661 @default.
- W4320719776 cites W2108205677 @default.
- W4320719776 cites W2134365229 @default.
- W4320719776 cites W2135517190 @default.
- W4320719776 cites W2147070976 @default.
- W4320719776 cites W2149569259 @default.
- W4320719776 cites W2156631002 @default.
- W4320719776 cites W2175532102 @default.
- W4320719776 cites W2270192675 @default.
- W4320719776 cites W2320114298 @default.
- W4320719776 cites W2731518524 @default.
- W4320719776 cites W2757397152 @default.
- W4320719776 cites W2766036159 @default.
- W4320719776 cites W2768039322 @default.
- W4320719776 cites W2782859682 @default.
- W4320719776 cites W2946918566 @default.
- W4320719776 cites W2963693396 @default.
- W4320719776 cites W3026282561 @default.
- W4320719776 cites W3039670661 @default.
- W4320719776 cites W3040792563 @default.
- W4320719776 cites W3041165114 @default.
- W4320719776 cites W3084637486 @default.
- W4320719776 cites W3172812463 @default.
- W4320719776 cites W3214091155 @default.
- W4320719776 cites W36793664 @default.
- W4320719776 cites W4205664787 @default.
- W4320719776 cites W2801875777 @default.
- W4320719776 doi "https://doi.org/10.1016/j.biosystemseng.2023.01.021" @default.
- W4320719776 hasPublicationYear "2023" @default.
- W4320719776 type Work @default.
- W4320719776 citedByCount "2" @default.
- W4320719776 countsByYear W43207197762023 @default.
- W4320719776 crossrefType "journal-article" @default.
- W4320719776 hasAuthorship W4320719776A5015893806 @default.
- W4320719776 hasAuthorship W4320719776A5026250307 @default.
- W4320719776 hasAuthorship W4320719776A5030771482 @default.
- W4320719776 hasAuthorship W4320719776A5042579643 @default.
- W4320719776 hasAuthorship W4320719776A5057176376 @default.
- W4320719776 hasAuthorship W4320719776A5084907853 @default.
- W4320719776 hasConcept C111919701 @default.
- W4320719776 hasConcept C119857082 @default.
- W4320719776 hasConcept C140793950 @default.
- W4320719776 hasConcept C142724271 @default.
- W4320719776 hasConcept C150903083 @default.
- W4320719776 hasConcept C154945302 @default.
- W4320719776 hasConcept C169258074 @default.
- W4320719776 hasConcept C2776370487 @default.
- W4320719776 hasConcept C2780289900 @default.
- W4320719776 hasConcept C40758303 @default.
- W4320719776 hasConcept C41008148 @default.
- W4320719776 hasConcept C71924100 @default.
- W4320719776 hasConcept C84525736 @default.
- W4320719776 hasConcept C86803240 @default.
- W4320719776 hasConcept C89805583 @default.
- W4320719776 hasConceptScore W4320719776C111919701 @default.
- W4320719776 hasConceptScore W4320719776C119857082 @default.
- W4320719776 hasConceptScore W4320719776C140793950 @default.
- W4320719776 hasConceptScore W4320719776C142724271 @default.
- W4320719776 hasConceptScore W4320719776C150903083 @default.
- W4320719776 hasConceptScore W4320719776C154945302 @default.
- W4320719776 hasConceptScore W4320719776C169258074 @default.
- W4320719776 hasConceptScore W4320719776C2776370487 @default.
- W4320719776 hasConceptScore W4320719776C2780289900 @default.
- W4320719776 hasConceptScore W4320719776C40758303 @default.
- W4320719776 hasConceptScore W4320719776C41008148 @default.
- W4320719776 hasConceptScore W4320719776C71924100 @default.
- W4320719776 hasConceptScore W4320719776C84525736 @default.
- W4320719776 hasConceptScore W4320719776C86803240 @default.
- W4320719776 hasConceptScore W4320719776C89805583 @default.
- W4320719776 hasLocation W43207197761 @default.
- W4320719776 hasOpenAccess W4320719776 @default.
- W4320719776 hasPrimaryLocation W43207197761 @default.
- W4320719776 hasRelatedWork W1604346844 @default.
- W4320719776 hasRelatedWork W1974771118 @default.
- W4320719776 hasRelatedWork W2006253631 @default.
- W4320719776 hasRelatedWork W2012565509 @default.
- W4320719776 hasRelatedWork W2093882081 @default.
- W4320719776 hasRelatedWork W2131673502 @default.
- W4320719776 hasRelatedWork W2531389236 @default.