Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320719876> ?p ?o ?g. }
- W4320719876 endingPage "108019" @default.
- W4320719876 startingPage "108019" @default.
- W4320719876 abstract "Particle size distributions in ore feed systems, as well as the identification of particles in these feed systems can provide important information in the advanced control of unit operations in mineral processing, such as crushing and grinding circuits. Image analysis has long been considered a promising approach to achieve this, as it is an inexpensive, unobtrusive means of acquiring information rich measurements. It typically requires segmentation of images in order to identify individual particles. This is a challenging task to accomplish reliably, as variable lighting, fines adhering to larger particles or contiguous particles, as well as variable particle sizes and shapes can all compromise the accuracy of traditional algorithms. Image segmentation with deep learning methods have recently been investigated to surmount these difficulties. In this investigation, U-net and U-net with superpixel preprocessing with simple linear iterative clustering (SLIC) are proposed and compared with a traditional watershed algorithm. The U-net approaches were markedly more reliable than the watershed algorithm. In addition, preprocessing of the images with SLIC resulted in further improvement of the results." @default.
- W4320719876 created "2023-02-15" @default.
- W4320719876 creator A5024912807 @default.
- W4320719876 creator A5050110042 @default.
- W4320719876 date "2023-03-01" @default.
- W4320719876 modified "2023-10-02" @default.
- W4320719876 title "Online particle size analysis on conveyor belts with dense convolutional neural networks" @default.
- W4320719876 cites W1901129140 @default.
- W4320719876 cites W1903029394 @default.
- W4320719876 cites W1972188717 @default.
- W4320719876 cites W1977887228 @default.
- W4320719876 cites W1996257806 @default.
- W4320719876 cites W1999478155 @default.
- W4320719876 cites W2026080067 @default.
- W4320719876 cites W2030058983 @default.
- W4320719876 cites W2032214235 @default.
- W4320719876 cites W2046126508 @default.
- W4320719876 cites W2046138051 @default.
- W4320719876 cites W2049156463 @default.
- W4320719876 cites W2051217785 @default.
- W4320719876 cites W2058435240 @default.
- W4320719876 cites W2065133329 @default.
- W4320719876 cites W2087916749 @default.
- W4320719876 cites W2104125540 @default.
- W4320719876 cites W2118246710 @default.
- W4320719876 cites W2121947440 @default.
- W4320719876 cites W2128371167 @default.
- W4320719876 cites W2131394935 @default.
- W4320719876 cites W2133797531 @default.
- W4320719876 cites W2146582318 @default.
- W4320719876 cites W2170065350 @default.
- W4320719876 cites W2429897336 @default.
- W4320719876 cites W2593493687 @default.
- W4320719876 cites W2690757387 @default.
- W4320719876 cites W2796630897 @default.
- W4320719876 cites W2807830984 @default.
- W4320719876 cites W2886690835 @default.
- W4320719876 cites W2896790556 @default.
- W4320719876 cites W2911268982 @default.
- W4320719876 cites W2936503027 @default.
- W4320719876 cites W2948678280 @default.
- W4320719876 cites W2972106663 @default.
- W4320719876 cites W2976771530 @default.
- W4320719876 cites W2982298334 @default.
- W4320719876 cites W2996213862 @default.
- W4320719876 cites W3006173852 @default.
- W4320719876 cites W3010144798 @default.
- W4320719876 cites W3035241330 @default.
- W4320719876 cites W3042907219 @default.
- W4320719876 cites W3097332950 @default.
- W4320719876 cites W3097930952 @default.
- W4320719876 cites W3142084776 @default.
- W4320719876 cites W3157016705 @default.
- W4320719876 cites W3159453891 @default.
- W4320719876 cites W3167749855 @default.
- W4320719876 cites W3169980505 @default.
- W4320719876 cites W3175623508 @default.
- W4320719876 cites W3182574065 @default.
- W4320719876 cites W3197603966 @default.
- W4320719876 doi "https://doi.org/10.1016/j.mineng.2023.108019" @default.
- W4320719876 hasPublicationYear "2023" @default.
- W4320719876 type Work @default.
- W4320719876 citedByCount "3" @default.
- W4320719876 countsByYear W43207198762023 @default.
- W4320719876 crossrefType "journal-article" @default.
- W4320719876 hasAuthorship W4320719876A5024912807 @default.
- W4320719876 hasAuthorship W4320719876A5050110042 @default.
- W4320719876 hasBestOaLocation W43207198761 @default.
- W4320719876 hasConcept C11413529 @default.
- W4320719876 hasConcept C124504099 @default.
- W4320719876 hasConcept C127413603 @default.
- W4320719876 hasConcept C153180895 @default.
- W4320719876 hasConcept C154945302 @default.
- W4320719876 hasConcept C2777571299 @default.
- W4320719876 hasConcept C34736171 @default.
- W4320719876 hasConcept C41008148 @default.
- W4320719876 hasConcept C50644808 @default.
- W4320719876 hasConcept C73555534 @default.
- W4320719876 hasConcept C78519656 @default.
- W4320719876 hasConcept C81363708 @default.
- W4320719876 hasConcept C89600930 @default.
- W4320719876 hasConceptScore W4320719876C11413529 @default.
- W4320719876 hasConceptScore W4320719876C124504099 @default.
- W4320719876 hasConceptScore W4320719876C127413603 @default.
- W4320719876 hasConceptScore W4320719876C153180895 @default.
- W4320719876 hasConceptScore W4320719876C154945302 @default.
- W4320719876 hasConceptScore W4320719876C2777571299 @default.
- W4320719876 hasConceptScore W4320719876C34736171 @default.
- W4320719876 hasConceptScore W4320719876C41008148 @default.
- W4320719876 hasConceptScore W4320719876C50644808 @default.
- W4320719876 hasConceptScore W4320719876C73555534 @default.
- W4320719876 hasConceptScore W4320719876C78519656 @default.
- W4320719876 hasConceptScore W4320719876C81363708 @default.
- W4320719876 hasConceptScore W4320719876C89600930 @default.
- W4320719876 hasFunder F4320325630 @default.
- W4320719876 hasLocation W43207198761 @default.
- W4320719876 hasOpenAccess W4320719876 @default.
- W4320719876 hasPrimaryLocation W43207198761 @default.