Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320725980> ?p ?o ?g. }
- W4320725980 abstract "An appropriate sample size is essential for obtaining a precise and reliable outcome of a study. In machine learning (ML), studies with inadequate samples suffer from overfitting of data and have a lower probability of producing true effects, while the increment in sample size increases the accuracy of prediction but may not cause a significant change after a certain sample size. Existing statistical approaches using standardized mean difference, effect size, and statistical power for determining sample size are potentially biased due to miscalculations or lack of experimental details. This study aims to design criteria for evaluating sample size in ML studies. We examined the average and grand effect sizes and the performance of five ML methods using simulated datasets and three real datasets to derive the criteria for sample size. We systematically increase the sample size, starting from 16, by randomly sampling and examine the impact of sample size on classifiers' performance and both effect sizes. Tenfold cross-validation was used to quantify the accuracy.The results demonstrate that the effect sizes and the classification accuracies increase while the variances in effect sizes shrink with the increment of samples when the datasets have a good discriminative power between two classes. By contrast, indeterminate datasets had poor effect sizes and classification accuracies, which did not improve by increasing sample size in both simulated and real datasets. A good dataset exhibited a significant difference in average and grand effect sizes. We derived two criteria based on the above findings to assess a decided sample size by combining the effect size and the ML accuracy. The sample size is considered suitable when it has appropriate effect sizes (≥ 0.5) and ML accuracy (≥ 80%). After an appropriate sample size, the increment in samples will not benefit as it will not significantly change the effect size and accuracy, thereby resulting in a good cost-benefit ratio.We believe that these practical criteria can be used as a reference for both the authors and editors to evaluate whether the selected sample size is adequate for a study." @default.
- W4320725980 created "2023-02-15" @default.
- W4320725980 creator A5009409648 @default.
- W4320725980 creator A5028118105 @default.
- W4320725980 creator A5048545270 @default.
- W4320725980 date "2023-02-14" @default.
- W4320725980 modified "2023-10-18" @default.
- W4320725980 title "Evaluation of a decided sample size in machine learning applications" @default.
- W4320725980 cites W1705336121 @default.
- W4320725980 cites W176045953 @default.
- W4320725980 cites W1981905832 @default.
- W4320725980 cites W1986523067 @default.
- W4320725980 cites W1997113291 @default.
- W4320725980 cites W2016293149 @default.
- W4320725980 cites W2022199055 @default.
- W4320725980 cites W2031797820 @default.
- W4320725980 cites W2053239079 @default.
- W4320725980 cites W2055702999 @default.
- W4320725980 cites W2095409369 @default.
- W4320725980 cites W2097917417 @default.
- W4320725980 cites W2103365735 @default.
- W4320725980 cites W2105824687 @default.
- W4320725980 cites W2107026277 @default.
- W4320725980 cites W2108267889 @default.
- W4320725980 cites W2111833294 @default.
- W4320725980 cites W2115937306 @default.
- W4320725980 cites W2132981406 @default.
- W4320725980 cites W2134185188 @default.
- W4320725980 cites W2137070227 @default.
- W4320725980 cites W2150215887 @default.
- W4320725980 cites W2156280121 @default.
- W4320725980 cites W2156285102 @default.
- W4320725980 cites W2159107784 @default.
- W4320725980 cites W2161565033 @default.
- W4320725980 cites W2162800060 @default.
- W4320725980 cites W2286261512 @default.
- W4320725980 cites W2398431533 @default.
- W4320725980 cites W2485936436 @default.
- W4320725980 cites W2536120357 @default.
- W4320725980 cites W2568988948 @default.
- W4320725980 cites W2578898966 @default.
- W4320725980 cites W2769187086 @default.
- W4320725980 cites W2776961836 @default.
- W4320725980 cites W2781957993 @default.
- W4320725980 cites W2805234167 @default.
- W4320725980 cites W2807683509 @default.
- W4320725980 cites W2934399013 @default.
- W4320725980 cites W2936573766 @default.
- W4320725980 cites W2937026923 @default.
- W4320725980 cites W2937326640 @default.
- W4320725980 cites W2967205578 @default.
- W4320725980 cites W2972140183 @default.
- W4320725980 cites W2973179191 @default.
- W4320725980 cites W2981679558 @default.
- W4320725980 cites W3106983564 @default.
- W4320725980 cites W3120992226 @default.
- W4320725980 cites W3175979958 @default.
- W4320725980 cites W3207975156 @default.
- W4320725980 cites W4200034720 @default.
- W4320725980 doi "https://doi.org/10.1186/s12859-023-05156-9" @default.
- W4320725980 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36788550" @default.
- W4320725980 hasPublicationYear "2023" @default.
- W4320725980 type Work @default.
- W4320725980 citedByCount "12" @default.
- W4320725980 countsByYear W43207259802023 @default.
- W4320725980 crossrefType "journal-article" @default.
- W4320725980 hasAuthorship W4320725980A5009409648 @default.
- W4320725980 hasAuthorship W4320725980A5028118105 @default.
- W4320725980 hasAuthorship W4320725980A5048545270 @default.
- W4320725980 hasBestOaLocation W43207259801 @default.
- W4320725980 hasConcept C105795698 @default.
- W4320725980 hasConcept C119857082 @default.
- W4320725980 hasConcept C129848803 @default.
- W4320725980 hasConcept C154945302 @default.
- W4320725980 hasConcept C185592680 @default.
- W4320725980 hasConcept C198531522 @default.
- W4320725980 hasConcept C22019652 @default.
- W4320725980 hasConcept C33923547 @default.
- W4320725980 hasConcept C41008148 @default.
- W4320725980 hasConcept C43617362 @default.
- W4320725980 hasConcept C50644808 @default.
- W4320725980 hasConcept C96608239 @default.
- W4320725980 hasConcept C97931131 @default.
- W4320725980 hasConceptScore W4320725980C105795698 @default.
- W4320725980 hasConceptScore W4320725980C119857082 @default.
- W4320725980 hasConceptScore W4320725980C129848803 @default.
- W4320725980 hasConceptScore W4320725980C154945302 @default.
- W4320725980 hasConceptScore W4320725980C185592680 @default.
- W4320725980 hasConceptScore W4320725980C198531522 @default.
- W4320725980 hasConceptScore W4320725980C22019652 @default.
- W4320725980 hasConceptScore W4320725980C33923547 @default.
- W4320725980 hasConceptScore W4320725980C41008148 @default.
- W4320725980 hasConceptScore W4320725980C43617362 @default.
- W4320725980 hasConceptScore W4320725980C50644808 @default.
- W4320725980 hasConceptScore W4320725980C96608239 @default.
- W4320725980 hasConceptScore W4320725980C97931131 @default.
- W4320725980 hasIssue "1" @default.
- W4320725980 hasLocation W43207259801 @default.
- W4320725980 hasLocation W43207259802 @default.
- W4320725980 hasLocation W43207259803 @default.