Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320726787> ?p ?o ?g. }
- W4320726787 abstract "To accurately identify atoms on noisy transmission electron microscope images, a deep learning (DL) approach is employed to estimate the map of probabilities at each pixel for being an atom with element discernment. Thanks to a delicately-designed loss function and the ability to extract features, the proposed DL networks can be trained by a small dataset created from approximately 30 experimental images, each with a size of 256 × 256 pixels2. The accuracy and robustness of the network were verified by resolving the structural defects of graphene and polar structures in PbTiO3/SrTiO3 multilayers from both the general TEM images and their imitated images on which intensities of some pixels lost randomly. Such a network has the potential to identify atoms from very few images of beam-sensitive material and explosive images recorded in a dynamical atomic process. The idea of using a small-dataset-trained DL framework to resolve a specific problem may prove instructive for practical DL applications in various fields." @default.
- W4320726787 created "2023-02-15" @default.
- W4320726787 creator A5015721776 @default.
- W4320726787 creator A5052134746 @default.
- W4320726787 creator A5074649975 @default.
- W4320726787 creator A5078340797 @default.
- W4320726787 creator A5079609139 @default.
- W4320726787 creator A5082769057 @default.
- W4320726787 date "2023-02-14" @default.
- W4320726787 modified "2023-09-25" @default.
- W4320726787 title "A small-dataset-trained deep learning framework for identifying atoms on transmission electron microscopy images" @default.
- W4320726787 cites W1990189104 @default.
- W4320726787 cites W2078845422 @default.
- W4320726787 cites W2097730430 @default.
- W4320726787 cites W2194775991 @default.
- W4320726787 cites W2562637781 @default.
- W4320726787 cites W2605257447 @default.
- W4320726787 cites W2729067345 @default.
- W4320726787 cites W2771733300 @default.
- W4320726787 cites W2783895701 @default.
- W4320726787 cites W2787089463 @default.
- W4320726787 cites W2813429017 @default.
- W4320726787 cites W2836650628 @default.
- W4320726787 cites W2887342585 @default.
- W4320726787 cites W2937581098 @default.
- W4320726787 cites W2963239459 @default.
- W4320726787 cites W2963741046 @default.
- W4320726787 cites W2982276101 @default.
- W4320726787 cites W3044054577 @default.
- W4320726787 cites W3048130369 @default.
- W4320726787 cites W3054332300 @default.
- W4320726787 cites W3094545446 @default.
- W4320726787 cites W3103002734 @default.
- W4320726787 cites W3134276259 @default.
- W4320726787 cites W3136398915 @default.
- W4320726787 cites W3153585705 @default.
- W4320726787 cites W3168615252 @default.
- W4320726787 cites W3174293692 @default.
- W4320726787 cites W3198757148 @default.
- W4320726787 cites W3201858997 @default.
- W4320726787 cites W4281399376 @default.
- W4320726787 cites W4281613406 @default.
- W4320726787 doi "https://doi.org/10.1038/s41598-023-29606-9" @default.
- W4320726787 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36788257" @default.
- W4320726787 hasPublicationYear "2023" @default.
- W4320726787 type Work @default.
- W4320726787 citedByCount "1" @default.
- W4320726787 countsByYear W43207267872023 @default.
- W4320726787 crossrefType "journal-article" @default.
- W4320726787 hasAuthorship W4320726787A5015721776 @default.
- W4320726787 hasAuthorship W4320726787A5052134746 @default.
- W4320726787 hasAuthorship W4320726787A5074649975 @default.
- W4320726787 hasAuthorship W4320726787A5078340797 @default.
- W4320726787 hasAuthorship W4320726787A5079609139 @default.
- W4320726787 hasAuthorship W4320726787A5082769057 @default.
- W4320726787 hasBestOaLocation W43207267871 @default.
- W4320726787 hasConcept C104317684 @default.
- W4320726787 hasConcept C108583219 @default.
- W4320726787 hasConcept C121332964 @default.
- W4320726787 hasConcept C1276947 @default.
- W4320726787 hasConcept C141353440 @default.
- W4320726787 hasConcept C146088050 @default.
- W4320726787 hasConcept C149635348 @default.
- W4320726787 hasConcept C153180895 @default.
- W4320726787 hasConcept C154945302 @default.
- W4320726787 hasConcept C160633673 @default.
- W4320726787 hasConcept C171250308 @default.
- W4320726787 hasConcept C185592680 @default.
- W4320726787 hasConcept C192562407 @default.
- W4320726787 hasConcept C29705727 @default.
- W4320726787 hasConcept C31972630 @default.
- W4320726787 hasConcept C41008148 @default.
- W4320726787 hasConcept C55493867 @default.
- W4320726787 hasConcept C58312451 @default.
- W4320726787 hasConcept C62520636 @default.
- W4320726787 hasConcept C63479239 @default.
- W4320726787 hasConceptScore W4320726787C104317684 @default.
- W4320726787 hasConceptScore W4320726787C108583219 @default.
- W4320726787 hasConceptScore W4320726787C121332964 @default.
- W4320726787 hasConceptScore W4320726787C1276947 @default.
- W4320726787 hasConceptScore W4320726787C141353440 @default.
- W4320726787 hasConceptScore W4320726787C146088050 @default.
- W4320726787 hasConceptScore W4320726787C149635348 @default.
- W4320726787 hasConceptScore W4320726787C153180895 @default.
- W4320726787 hasConceptScore W4320726787C154945302 @default.
- W4320726787 hasConceptScore W4320726787C160633673 @default.
- W4320726787 hasConceptScore W4320726787C171250308 @default.
- W4320726787 hasConceptScore W4320726787C185592680 @default.
- W4320726787 hasConceptScore W4320726787C192562407 @default.
- W4320726787 hasConceptScore W4320726787C29705727 @default.
- W4320726787 hasConceptScore W4320726787C31972630 @default.
- W4320726787 hasConceptScore W4320726787C41008148 @default.
- W4320726787 hasConceptScore W4320726787C55493867 @default.
- W4320726787 hasConceptScore W4320726787C58312451 @default.
- W4320726787 hasConceptScore W4320726787C62520636 @default.
- W4320726787 hasConceptScore W4320726787C63479239 @default.
- W4320726787 hasFunder F4320317327 @default.
- W4320726787 hasFunder F4320321001 @default.
- W4320726787 hasIssue "1" @default.
- W4320726787 hasLocation W43207267871 @default.