Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320730502> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4320730502 endingPage "101260" @default.
- W4320730502 startingPage "101260" @default.
- W4320730502 abstract "The concordance probability is an extension of the popular area under the curve (AUC) which is commonly used to measure the accuracy of a predictive model. It can be extended to the thresholded and weighted concordance probability which are more appropriate for some applications. The naive way of estimating this measure requires a quadratic computation time, which is prohibitive for large data sets. We propose a new algorithm that computes the weighted thresholded concordance probability in linearithmic time, which is proven and empirically confirmed. This unlocks the possibility of calculating the thresholded concordance probability in a big data world, and makes it possible to base the fitness function of a machine learning algorithm on the concordance probability. These applications are successfully illustrated by two real examples from the insurance sector. The first one focuses on feature selection based on the concordance probability using a binary particle swarm optimization. In the second application, we use a genetic algorithm to optimize a loss function based on the concordance probability. Since both of these applications require evaluating the concordance probability a very high number of times, a huge decrease in computation time is obtained using our fast algorithm. Moreover, it is shown that the neural network optimized for the concordance probability with the genetic algorithm outperforms the traditional benchmark methodology, i.e. a classical neural network optimized for the deviance. The applicability of our fast algorithm extends beyond these illustrations and unlocks various new uses of the thresholded and weighted concordance probability." @default.
- W4320730502 created "2023-02-15" @default.
- W4320730502 creator A5025857421 @default.
- W4320730502 creator A5085208338 @default.
- W4320730502 creator A5091795973 @default.
- W4320730502 date "2023-04-01" @default.
- W4320730502 modified "2023-10-03" @default.
- W4320730502 title "Fast thresholded concordance probability for evolutionary optimization" @default.
- W4320730502 cites W1524892475 @default.
- W4320730502 cites W1983275696 @default.
- W4320730502 cites W2000621750 @default.
- W4320730502 cites W2026706435 @default.
- W4320730502 cites W2076898240 @default.
- W4320730502 cites W2146916273 @default.
- W4320730502 cites W2149407433 @default.
- W4320730502 cites W2171149164 @default.
- W4320730502 cites W2302284329 @default.
- W4320730502 cites W2503920952 @default.
- W4320730502 cites W2889464031 @default.
- W4320730502 cites W3006478128 @default.
- W4320730502 cites W3204623099 @default.
- W4320730502 cites W4234080744 @default.
- W4320730502 cites W4239181501 @default.
- W4320730502 cites W4292083457 @default.
- W4320730502 cites W759276061 @default.
- W4320730502 doi "https://doi.org/10.1016/j.swevo.2023.101260" @default.
- W4320730502 hasPublicationYear "2023" @default.
- W4320730502 type Work @default.
- W4320730502 citedByCount "0" @default.
- W4320730502 crossrefType "journal-article" @default.
- W4320730502 hasAuthorship W4320730502A5025857421 @default.
- W4320730502 hasAuthorship W4320730502A5085208338 @default.
- W4320730502 hasAuthorship W4320730502A5091795973 @default.
- W4320730502 hasConcept C105795698 @default.
- W4320730502 hasConcept C105902424 @default.
- W4320730502 hasConcept C11413529 @default.
- W4320730502 hasConcept C119857082 @default.
- W4320730502 hasConcept C126322002 @default.
- W4320730502 hasConcept C13280743 @default.
- W4320730502 hasConcept C149441793 @default.
- W4320730502 hasConcept C153180895 @default.
- W4320730502 hasConcept C154945302 @default.
- W4320730502 hasConcept C160798450 @default.
- W4320730502 hasConcept C185798385 @default.
- W4320730502 hasConcept C205649164 @default.
- W4320730502 hasConcept C33923547 @default.
- W4320730502 hasConcept C41008148 @default.
- W4320730502 hasConcept C71924100 @default.
- W4320730502 hasConceptScore W4320730502C105795698 @default.
- W4320730502 hasConceptScore W4320730502C105902424 @default.
- W4320730502 hasConceptScore W4320730502C11413529 @default.
- W4320730502 hasConceptScore W4320730502C119857082 @default.
- W4320730502 hasConceptScore W4320730502C126322002 @default.
- W4320730502 hasConceptScore W4320730502C13280743 @default.
- W4320730502 hasConceptScore W4320730502C149441793 @default.
- W4320730502 hasConceptScore W4320730502C153180895 @default.
- W4320730502 hasConceptScore W4320730502C154945302 @default.
- W4320730502 hasConceptScore W4320730502C160798450 @default.
- W4320730502 hasConceptScore W4320730502C185798385 @default.
- W4320730502 hasConceptScore W4320730502C205649164 @default.
- W4320730502 hasConceptScore W4320730502C33923547 @default.
- W4320730502 hasConceptScore W4320730502C41008148 @default.
- W4320730502 hasConceptScore W4320730502C71924100 @default.
- W4320730502 hasLocation W43207305021 @default.
- W4320730502 hasOpenAccess W4320730502 @default.
- W4320730502 hasPrimaryLocation W43207305021 @default.
- W4320730502 hasRelatedWork W112744582 @default.
- W4320730502 hasRelatedWork W1485630101 @default.
- W4320730502 hasRelatedWork W2498017833 @default.
- W4320730502 hasRelatedWork W2961085424 @default.
- W4320730502 hasRelatedWork W3006182991 @default.
- W4320730502 hasRelatedWork W4247102092 @default.
- W4320730502 hasRelatedWork W4286629047 @default.
- W4320730502 hasRelatedWork W4306321456 @default.
- W4320730502 hasRelatedWork W4306674287 @default.
- W4320730502 hasRelatedWork W4224009465 @default.
- W4320730502 hasVolume "78" @default.
- W4320730502 isParatext "false" @default.
- W4320730502 isRetracted "false" @default.
- W4320730502 workType "article" @default.