Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320730797> ?p ?o ?g. }
- W4320730797 endingPage "199" @default.
- W4320730797 startingPage "199" @default.
- W4320730797 abstract "This study aims to consider lattice Boltzmann method (LBM)–magnetohydrodynamics (MHD) data to develop equations to predict the average rate of heat transfer quantitatively. The present approach considers a 2D rectangular cavity with adiabatic side walls, and the bottom wall is heated while the top wall is kept cold. Rayleigh–Bénard (RB) convection was considered a heat-transfer phenomenon within the cavity. The Hartmann (Ha) number, by varying the inclination angle (θ), was considered in developing the equations by considering the input parameters, namely, the Rayleigh (Ra) numbers, Darcy (Da) numbers, and porosity (ϵ) of the cavity in different segments. Each segment considers a data-driven approach to calibrate the Levenberg–Marquardt (LM) algorithm, which is highly linked with the artificial neural network (ANN) machine learning method. Separate validations have been conducted in corresponding sections to showcase the accuracy of the equations. Overall, coefficients of determination (R2) were found to be within 0.85 to 0.99. The significant findings of this study present mathematical equations to predict the average Nusselt number (Nu¯). The equations can be used to quantitatively predict the heat transfer without directly simulating LBM. In other words, the equations can be considered validations methods for any LBM-MHD model, which considers RB convection within the range of the parameters in each equation." @default.
- W4320730797 created "2023-02-15" @default.
- W4320730797 creator A5041848320 @default.
- W4320730797 creator A5048717791 @default.
- W4320730797 creator A5051038021 @default.
- W4320730797 creator A5053139994 @default.
- W4320730797 date "2023-02-13" @default.
- W4320730797 modified "2023-09-29" @default.
- W4320730797 title "LBM-MHD Data-Driven Approach to Predict Rayleigh–Bénard Convective Heat Transfer by Levenberg–Marquardt Algorithm" @default.
- W4320730797 cites W1954006087 @default.
- W4320730797 cites W1964681717 @default.
- W4320730797 cites W1978300980 @default.
- W4320730797 cites W1991741354 @default.
- W4320730797 cites W2002531309 @default.
- W4320730797 cites W2010865794 @default.
- W4320730797 cites W2032912511 @default.
- W4320730797 cites W2068500088 @default.
- W4320730797 cites W2086605639 @default.
- W4320730797 cites W2140527568 @default.
- W4320730797 cites W2498861369 @default.
- W4320730797 cites W2593326681 @default.
- W4320730797 cites W2782685900 @default.
- W4320730797 cites W2799658401 @default.
- W4320730797 cites W2898436200 @default.
- W4320730797 cites W2904958850 @default.
- W4320730797 cites W2941606444 @default.
- W4320730797 cites W2968163882 @default.
- W4320730797 cites W3007149244 @default.
- W4320730797 cites W3010779614 @default.
- W4320730797 cites W3011830239 @default.
- W4320730797 cites W3041501152 @default.
- W4320730797 cites W3046523218 @default.
- W4320730797 cites W3048214392 @default.
- W4320730797 cites W3098373720 @default.
- W4320730797 cites W3099437115 @default.
- W4320730797 cites W3102140816 @default.
- W4320730797 cites W3104631388 @default.
- W4320730797 cites W3113128896 @default.
- W4320730797 cites W3125501083 @default.
- W4320730797 cites W3157124699 @default.
- W4320730797 cites W3166023244 @default.
- W4320730797 cites W3168411693 @default.
- W4320730797 cites W3207137162 @default.
- W4320730797 cites W324280150 @default.
- W4320730797 cites W4200179258 @default.
- W4320730797 cites W4206841563 @default.
- W4320730797 cites W4206980347 @default.
- W4320730797 cites W4212811461 @default.
- W4320730797 cites W4220677784 @default.
- W4320730797 cites W4220867367 @default.
- W4320730797 cites W4220951269 @default.
- W4320730797 cites W4224288533 @default.
- W4320730797 cites W4229048496 @default.
- W4320730797 cites W4238184613 @default.
- W4320730797 cites W4254345639 @default.
- W4320730797 cites W4282023535 @default.
- W4320730797 cites W4283024560 @default.
- W4320730797 cites W4283574417 @default.
- W4320730797 cites W4291144682 @default.
- W4320730797 cites W4292182223 @default.
- W4320730797 cites W4295346604 @default.
- W4320730797 cites W4297347867 @default.
- W4320730797 cites W4297860501 @default.
- W4320730797 cites W4307957853 @default.
- W4320730797 cites W4313403588 @default.
- W4320730797 cites W4318338129 @default.
- W4320730797 cites W3004712663 @default.
- W4320730797 cites W3123706890 @default.
- W4320730797 doi "https://doi.org/10.3390/axioms12020199" @default.
- W4320730797 hasPublicationYear "2023" @default.
- W4320730797 type Work @default.
- W4320730797 citedByCount "2" @default.
- W4320730797 countsByYear W43207307972023 @default.
- W4320730797 crossrefType "journal-article" @default.
- W4320730797 hasAuthorship W4320730797A5041848320 @default.
- W4320730797 hasAuthorship W4320730797A5048717791 @default.
- W4320730797 hasAuthorship W4320730797A5051038021 @default.
- W4320730797 hasAuthorship W4320730797A5053139994 @default.
- W4320730797 hasBestOaLocation W43207307971 @default.
- W4320730797 hasConcept C106836276 @default.
- W4320730797 hasConcept C10899652 @default.
- W4320730797 hasConcept C109663097 @default.
- W4320730797 hasConcept C11413529 @default.
- W4320730797 hasConcept C115260700 @default.
- W4320730797 hasConcept C121332964 @default.
- W4320730797 hasConcept C130230704 @default.
- W4320730797 hasConcept C154945302 @default.
- W4320730797 hasConcept C182748727 @default.
- W4320730797 hasConcept C196558001 @default.
- W4320730797 hasConcept C21821499 @default.
- W4320730797 hasConcept C31532427 @default.
- W4320730797 hasConcept C33923547 @default.
- W4320730797 hasConcept C41008148 @default.
- W4320730797 hasConcept C50517652 @default.
- W4320730797 hasConcept C50644808 @default.
- W4320730797 hasConcept C54791560 @default.
- W4320730797 hasConcept C57879066 @default.
- W4320730797 hasConcept C62520636 @default.