Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320736056> ?p ?o ?g. }
- W4320736056 endingPage "9289" @default.
- W4320736056 startingPage "9265" @default.
- W4320736056 abstract "<abstract><p>This paper deals with a two-step explicit predictor-corrector approach so-called the two-step MacCormack formulation, for solving the one-dimensional nonlinear shallow water equations with source terms. The proposed two-step numerical scheme uses the fractional steps procedure to treat the friction slope and to upwind the convection term in order to control the numerical oscillations and stability. The developed scheme uses both forward and backward difference formulations in the predictor and corrector steps, respectively. The linear stability of the constructed technique is deeply analyzed using the Von Neumann stability approach whereas the convergence rate of the proposed method is numerically obtained in the $ L^{2} $-norm. A wide set of numerical examples confirm the theoretical results.</p></abstract>" @default.
- W4320736056 created "2023-02-15" @default.
- W4320736056 creator A5012018763 @default.
- W4320736056 creator A5019568990 @default.
- W4320736056 creator A5023638282 @default.
- W4320736056 date "2023-01-01" @default.
- W4320736056 modified "2023-10-03" @default.
- W4320736056 title "Stability analysis and convergence rate of a two-step predictor-corrector approach for shallow water equations with source terms" @default.
- W4320736056 cites W1968729685 @default.
- W4320736056 cites W1989456567 @default.
- W4320736056 cites W2013602936 @default.
- W4320736056 cites W2020168202 @default.
- W4320736056 cites W2039150507 @default.
- W4320736056 cites W2064480181 @default.
- W4320736056 cites W2107661716 @default.
- W4320736056 cites W2116661194 @default.
- W4320736056 cites W2133429431 @default.
- W4320736056 cites W2137807118 @default.
- W4320736056 cites W2144192107 @default.
- W4320736056 cites W2158522603 @default.
- W4320736056 cites W2167940142 @default.
- W4320736056 cites W2169195988 @default.
- W4320736056 cites W2414031430 @default.
- W4320736056 cites W2530486304 @default.
- W4320736056 cites W2587124020 @default.
- W4320736056 cites W2794099278 @default.
- W4320736056 cites W2804962757 @default.
- W4320736056 cites W2811216691 @default.
- W4320736056 cites W2982465852 @default.
- W4320736056 cites W3004737222 @default.
- W4320736056 cites W3017068964 @default.
- W4320736056 cites W3120055852 @default.
- W4320736056 cites W3131832263 @default.
- W4320736056 cites W3154170032 @default.
- W4320736056 cites W3168740467 @default.
- W4320736056 cites W3203564307 @default.
- W4320736056 cites W3212903142 @default.
- W4320736056 cites W4210891274 @default.
- W4320736056 cites W4220987269 @default.
- W4320736056 cites W4236830086 @default.
- W4320736056 cites W4315652179 @default.
- W4320736056 doi "https://doi.org/10.3934/math.2023465" @default.
- W4320736056 hasPublicationYear "2023" @default.
- W4320736056 type Work @default.
- W4320736056 citedByCount "4" @default.
- W4320736056 countsByYear W43207360562023 @default.
- W4320736056 crossrefType "journal-article" @default.
- W4320736056 hasAuthorship W4320736056A5012018763 @default.
- W4320736056 hasAuthorship W4320736056A5019568990 @default.
- W4320736056 hasAuthorship W4320736056A5023638282 @default.
- W4320736056 hasBestOaLocation W43207360561 @default.
- W4320736056 hasConcept C112972136 @default.
- W4320736056 hasConcept C119857082 @default.
- W4320736056 hasConcept C121332964 @default.
- W4320736056 hasConcept C127162648 @default.
- W4320736056 hasConcept C134306372 @default.
- W4320736056 hasConcept C157977623 @default.
- W4320736056 hasConcept C158622935 @default.
- W4320736056 hasConcept C162324750 @default.
- W4320736056 hasConcept C176321772 @default.
- W4320736056 hasConcept C177264268 @default.
- W4320736056 hasConcept C17744445 @default.
- W4320736056 hasConcept C191795146 @default.
- W4320736056 hasConcept C199360897 @default.
- W4320736056 hasConcept C199539241 @default.
- W4320736056 hasConcept C2777303404 @default.
- W4320736056 hasConcept C28826006 @default.
- W4320736056 hasConcept C31258907 @default.
- W4320736056 hasConcept C33923547 @default.
- W4320736056 hasConcept C41008148 @default.
- W4320736056 hasConcept C48753275 @default.
- W4320736056 hasConcept C50522688 @default.
- W4320736056 hasConcept C57869625 @default.
- W4320736056 hasConcept C62520636 @default.
- W4320736056 hasConcept C71477052 @default.
- W4320736056 hasConceptScore W4320736056C112972136 @default.
- W4320736056 hasConceptScore W4320736056C119857082 @default.
- W4320736056 hasConceptScore W4320736056C121332964 @default.
- W4320736056 hasConceptScore W4320736056C127162648 @default.
- W4320736056 hasConceptScore W4320736056C134306372 @default.
- W4320736056 hasConceptScore W4320736056C157977623 @default.
- W4320736056 hasConceptScore W4320736056C158622935 @default.
- W4320736056 hasConceptScore W4320736056C162324750 @default.
- W4320736056 hasConceptScore W4320736056C176321772 @default.
- W4320736056 hasConceptScore W4320736056C177264268 @default.
- W4320736056 hasConceptScore W4320736056C17744445 @default.
- W4320736056 hasConceptScore W4320736056C191795146 @default.
- W4320736056 hasConceptScore W4320736056C199360897 @default.
- W4320736056 hasConceptScore W4320736056C199539241 @default.
- W4320736056 hasConceptScore W4320736056C2777303404 @default.
- W4320736056 hasConceptScore W4320736056C28826006 @default.
- W4320736056 hasConceptScore W4320736056C31258907 @default.
- W4320736056 hasConceptScore W4320736056C33923547 @default.
- W4320736056 hasConceptScore W4320736056C41008148 @default.
- W4320736056 hasConceptScore W4320736056C48753275 @default.
- W4320736056 hasConceptScore W4320736056C50522688 @default.
- W4320736056 hasConceptScore W4320736056C57869625 @default.
- W4320736056 hasConceptScore W4320736056C62520636 @default.