Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320802022> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4320802022 abstract "Devanagari scripts are a good source of information as it consists medieval and prestigious content which is very useful for the upcoming generations. Digitization of these scripts becomes one of the most important task to make the content available. Pattern recognition emerges its one of the applications as Optical character recognition. For the character recognition from manuscripts, the authors have used CNN which gives higher character recognition accuracy. This paper implements Convolution Neural Network + Long Short Term Memory for Devanagari character recognition. The total of 250 manuscript pages were considered and the dataset of multiple characters were divided into 33 classes of basic characters. The proposed model was run using 15:85 and 25:75 as test:train ratio of characters. Also, the number of epochs were varied for better recognition accuracy. The authors observed the best recognition accuracy of 93.63% when the proposed model was run with 25:75 test:train data on 27 epochs." @default.
- W4320802022 created "2023-02-15" @default.
- W4320802022 creator A5053824057 @default.
- W4320802022 creator A5071639513 @default.
- W4320802022 creator A5075814777 @default.
- W4320802022 date "2022-10-25" @default.
- W4320802022 modified "2023-10-18" @default.
- W4320802022 title "CNN -LSTM Based Approach for Recognition of Devanagari Manuscripts" @default.
- W4320802022 cites W2027362923 @default.
- W4320802022 cites W2183341477 @default.
- W4320802022 cites W2587231757 @default.
- W4320802022 cites W2789876780 @default.
- W4320802022 cites W3021295476 @default.
- W4320802022 cites W3041148517 @default.
- W4320802022 cites W3122930709 @default.
- W4320802022 cites W3130456057 @default.
- W4320802022 cites W3183698554 @default.
- W4320802022 doi "https://doi.org/10.1109/icdabi56818.2022.10041262" @default.
- W4320802022 hasPublicationYear "2022" @default.
- W4320802022 type Work @default.
- W4320802022 citedByCount "1" @default.
- W4320802022 crossrefType "proceedings-article" @default.
- W4320802022 hasAuthorship W4320802022A5053824057 @default.
- W4320802022 hasAuthorship W4320802022A5071639513 @default.
- W4320802022 hasAuthorship W4320802022A5075814777 @default.
- W4320802022 hasConcept C108583219 @default.
- W4320802022 hasConcept C111919701 @default.
- W4320802022 hasConcept C115961682 @default.
- W4320802022 hasConcept C153180895 @default.
- W4320802022 hasConcept C154945302 @default.
- W4320802022 hasConcept C162324750 @default.
- W4320802022 hasConcept C187736073 @default.
- W4320802022 hasConcept C204321447 @default.
- W4320802022 hasConcept C2524010 @default.
- W4320802022 hasConcept C2779308522 @default.
- W4320802022 hasConcept C2780144916 @default.
- W4320802022 hasConcept C2780451532 @default.
- W4320802022 hasConcept C2780861071 @default.
- W4320802022 hasConcept C28490314 @default.
- W4320802022 hasConcept C2987247673 @default.
- W4320802022 hasConcept C31972630 @default.
- W4320802022 hasConcept C33923547 @default.
- W4320802022 hasConcept C41008148 @default.
- W4320802022 hasConcept C45347329 @default.
- W4320802022 hasConcept C50644808 @default.
- W4320802022 hasConcept C546480517 @default.
- W4320802022 hasConcept C61423126 @default.
- W4320802022 hasConcept C81363708 @default.
- W4320802022 hasConceptScore W4320802022C108583219 @default.
- W4320802022 hasConceptScore W4320802022C111919701 @default.
- W4320802022 hasConceptScore W4320802022C115961682 @default.
- W4320802022 hasConceptScore W4320802022C153180895 @default.
- W4320802022 hasConceptScore W4320802022C154945302 @default.
- W4320802022 hasConceptScore W4320802022C162324750 @default.
- W4320802022 hasConceptScore W4320802022C187736073 @default.
- W4320802022 hasConceptScore W4320802022C204321447 @default.
- W4320802022 hasConceptScore W4320802022C2524010 @default.
- W4320802022 hasConceptScore W4320802022C2779308522 @default.
- W4320802022 hasConceptScore W4320802022C2780144916 @default.
- W4320802022 hasConceptScore W4320802022C2780451532 @default.
- W4320802022 hasConceptScore W4320802022C2780861071 @default.
- W4320802022 hasConceptScore W4320802022C28490314 @default.
- W4320802022 hasConceptScore W4320802022C2987247673 @default.
- W4320802022 hasConceptScore W4320802022C31972630 @default.
- W4320802022 hasConceptScore W4320802022C33923547 @default.
- W4320802022 hasConceptScore W4320802022C41008148 @default.
- W4320802022 hasConceptScore W4320802022C45347329 @default.
- W4320802022 hasConceptScore W4320802022C50644808 @default.
- W4320802022 hasConceptScore W4320802022C546480517 @default.
- W4320802022 hasConceptScore W4320802022C61423126 @default.
- W4320802022 hasConceptScore W4320802022C81363708 @default.
- W4320802022 hasLocation W43208020221 @default.
- W4320802022 hasOpenAccess W4320802022 @default.
- W4320802022 hasPrimaryLocation W43208020221 @default.
- W4320802022 hasRelatedWork W1878779906 @default.
- W4320802022 hasRelatedWork W2739657682 @default.
- W4320802022 hasRelatedWork W2787208043 @default.
- W4320802022 hasRelatedWork W2806330010 @default.
- W4320802022 hasRelatedWork W2809903270 @default.
- W4320802022 hasRelatedWork W3049917942 @default.
- W4320802022 hasRelatedWork W3097403492 @default.
- W4320802022 hasRelatedWork W3210494940 @default.
- W4320802022 hasRelatedWork W4312417841 @default.
- W4320802022 hasRelatedWork W4320802022 @default.
- W4320802022 isParatext "false" @default.
- W4320802022 isRetracted "false" @default.
- W4320802022 workType "article" @default.