Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320802023> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4320802023 abstract "The widespread use of drones and the reduction of costs have made studies with drones popular. Especially the studies using artificial intelligence are followed carefully. The increase in these studies has paved the way for the integration of artificial intelligence algorithms such as computer vision, object tracking, and object detection into drones to perform more complex tasks autonomously. In addition, unmanned aerial vehicles are used in many useful tasks to eliminate illegal security threats such as border violations and drug trafficking. For this reason, the importance of drones is increasing day by day. In this article, the articles related to drone detection using state-of-art deep learning algorithms in the last 3 years have been reviewed and compiled. In particular, the methods used, suggested approaches, analysis methods, and the results obtained in these articles are summarized. In terms of the algorithms used in the reviewed articles, it is seen that it is preferred more frequently due to the success of radio signals and the success of one-stage detectors in terms of detection methods." @default.
- W4320802023 created "2023-02-15" @default.
- W4320802023 creator A5075501474 @default.
- W4320802023 creator A5082965948 @default.
- W4320802023 date "2022-10-25" @default.
- W4320802023 modified "2023-09-25" @default.
- W4320802023 title "Survey and Comparative Study for Drone Detection Using Deep Learning" @default.
- W4320802023 cites W1536680647 @default.
- W4320802023 cites W1817667747 @default.
- W4320802023 cites W2120419212 @default.
- W4320802023 cites W2161969291 @default.
- W4320802023 cites W2164598857 @default.
- W4320802023 cites W2183182206 @default.
- W4320802023 cites W2570343428 @default.
- W4320802023 cites W2718471533 @default.
- W4320802023 cites W2884561390 @default.
- W4320802023 cites W2896811747 @default.
- W4320802023 cites W2962680212 @default.
- W4320802023 cites W2963037989 @default.
- W4320802023 cites W3024044210 @default.
- W4320802023 cites W3025996032 @default.
- W4320802023 cites W3036934147 @default.
- W4320802023 cites W3089146878 @default.
- W4320802023 cites W3092550519 @default.
- W4320802023 cites W3098564007 @default.
- W4320802023 cites W3106250896 @default.
- W4320802023 cites W3124526451 @default.
- W4320802023 cites W3134566164 @default.
- W4320802023 cites W3153216549 @default.
- W4320802023 cites W4212958548 @default.
- W4320802023 cites W4220967990 @default.
- W4320802023 cites W639708223 @default.
- W4320802023 doi "https://doi.org/10.1109/icdabi56818.2022.10041658" @default.
- W4320802023 hasPublicationYear "2022" @default.
- W4320802023 type Work @default.
- W4320802023 citedByCount "0" @default.
- W4320802023 crossrefType "proceedings-article" @default.
- W4320802023 hasAuthorship W4320802023A5075501474 @default.
- W4320802023 hasAuthorship W4320802023A5082965948 @default.
- W4320802023 hasConcept C108583219 @default.
- W4320802023 hasConcept C119857082 @default.
- W4320802023 hasConcept C153180895 @default.
- W4320802023 hasConcept C154945302 @default.
- W4320802023 hasConcept C2776151529 @default.
- W4320802023 hasConcept C2781238097 @default.
- W4320802023 hasConcept C31972630 @default.
- W4320802023 hasConcept C38652104 @default.
- W4320802023 hasConcept C41008148 @default.
- W4320802023 hasConcept C54355233 @default.
- W4320802023 hasConcept C59519942 @default.
- W4320802023 hasConcept C86803240 @default.
- W4320802023 hasConceptScore W4320802023C108583219 @default.
- W4320802023 hasConceptScore W4320802023C119857082 @default.
- W4320802023 hasConceptScore W4320802023C153180895 @default.
- W4320802023 hasConceptScore W4320802023C154945302 @default.
- W4320802023 hasConceptScore W4320802023C2776151529 @default.
- W4320802023 hasConceptScore W4320802023C2781238097 @default.
- W4320802023 hasConceptScore W4320802023C31972630 @default.
- W4320802023 hasConceptScore W4320802023C38652104 @default.
- W4320802023 hasConceptScore W4320802023C41008148 @default.
- W4320802023 hasConceptScore W4320802023C54355233 @default.
- W4320802023 hasConceptScore W4320802023C59519942 @default.
- W4320802023 hasConceptScore W4320802023C86803240 @default.
- W4320802023 hasLocation W43208020231 @default.
- W4320802023 hasOpenAccess W4320802023 @default.
- W4320802023 hasPrimaryLocation W43208020231 @default.
- W4320802023 hasRelatedWork W1971759388 @default.
- W4320802023 hasRelatedWork W2004370856 @default.
- W4320802023 hasRelatedWork W2007544051 @default.
- W4320802023 hasRelatedWork W2021186063 @default.
- W4320802023 hasRelatedWork W2025800131 @default.
- W4320802023 hasRelatedWork W2035456249 @default.
- W4320802023 hasRelatedWork W2095705906 @default.
- W4320802023 hasRelatedWork W2129974284 @default.
- W4320802023 hasRelatedWork W2970686063 @default.
- W4320802023 hasRelatedWork W2975200075 @default.
- W4320802023 isParatext "false" @default.
- W4320802023 isRetracted "false" @default.
- W4320802023 workType "article" @default.