Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320802227> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4320802227 abstract "Social networks provide a plethora of information for gathering extra data on people’s behavior, trends, opinions, and feelings during human-affecting occurrences, such as natural catastrophes. Twitter is an inevitable communication medium during calamities. People mainly depend on Twitter to announce real-time emergencies. However, it is rarely straightforward if someone is declaring a tragedy. Sentiment analysis of disaster tweets aid in situational awareness and realizing the disaster dynamics. In our paper, we perform a sentimental analysis of disaster tweets using techniques based on machine learning and deep learning. The tweets are pre-processed before being converted into a structured form using Natural Language Processing (NLP) methods. Supervised learning techniques such as the Support Vector Machine and the Naive Bayes Classifier algorithm are used to develop the Classifier, which categorizes tweets into distinct catastrophes and selects the most appropriate algorithm. The chosen algorithm is further enriched with an emoticon detection algorithm for explicit elucidation. Our research would help disaster relief organizations and news agencies to conclude about the state of affairs and do the needful." @default.
- W4320802227 created "2023-02-15" @default.
- W4320802227 creator A5036656695 @default.
- W4320802227 creator A5071752247 @default.
- W4320802227 creator A5076164648 @default.
- W4320802227 date "2022-10-13" @default.
- W4320802227 modified "2023-10-14" @default.
- W4320802227 title "Classification of Disaster Tweets using Machine Learning and Deep Learning Techniques" @default.
- W4320802227 cites W1072271100 @default.
- W4320802227 cites W1629357148 @default.
- W4320802227 cites W2250734828 @default.
- W4320802227 cites W2561761609 @default.
- W4320802227 cites W2562892017 @default.
- W4320802227 cites W2727096307 @default.
- W4320802227 cites W2886799937 @default.
- W4320802227 cites W3006761088 @default.
- W4320802227 cites W3046986248 @default.
- W4320802227 cites W3126965705 @default.
- W4320802227 cites W50740790 @default.
- W4320802227 doi "https://doi.org/10.1109/tqcebt54229.2022.10041629" @default.
- W4320802227 hasPublicationYear "2022" @default.
- W4320802227 type Work @default.
- W4320802227 citedByCount "1" @default.
- W4320802227 countsByYear W43208022272023 @default.
- W4320802227 crossrefType "proceedings-article" @default.
- W4320802227 hasAuthorship W4320802227A5036656695 @default.
- W4320802227 hasAuthorship W4320802227A5071752247 @default.
- W4320802227 hasAuthorship W4320802227A5076164648 @default.
- W4320802227 hasConcept C108583219 @default.
- W4320802227 hasConcept C119857082 @default.
- W4320802227 hasConcept C121332964 @default.
- W4320802227 hasConcept C12267149 @default.
- W4320802227 hasConcept C127413603 @default.
- W4320802227 hasConcept C136764020 @default.
- W4320802227 hasConcept C145804949 @default.
- W4320802227 hasConcept C146978453 @default.
- W4320802227 hasConcept C153294291 @default.
- W4320802227 hasConcept C154945302 @default.
- W4320802227 hasConcept C166566181 @default.
- W4320802227 hasConcept C170858558 @default.
- W4320802227 hasConcept C204321447 @default.
- W4320802227 hasConcept C41008148 @default.
- W4320802227 hasConcept C518677369 @default.
- W4320802227 hasConcept C52001869 @default.
- W4320802227 hasConcept C66402592 @default.
- W4320802227 hasConcept C95623464 @default.
- W4320802227 hasConceptScore W4320802227C108583219 @default.
- W4320802227 hasConceptScore W4320802227C119857082 @default.
- W4320802227 hasConceptScore W4320802227C121332964 @default.
- W4320802227 hasConceptScore W4320802227C12267149 @default.
- W4320802227 hasConceptScore W4320802227C127413603 @default.
- W4320802227 hasConceptScore W4320802227C136764020 @default.
- W4320802227 hasConceptScore W4320802227C145804949 @default.
- W4320802227 hasConceptScore W4320802227C146978453 @default.
- W4320802227 hasConceptScore W4320802227C153294291 @default.
- W4320802227 hasConceptScore W4320802227C154945302 @default.
- W4320802227 hasConceptScore W4320802227C166566181 @default.
- W4320802227 hasConceptScore W4320802227C170858558 @default.
- W4320802227 hasConceptScore W4320802227C204321447 @default.
- W4320802227 hasConceptScore W4320802227C41008148 @default.
- W4320802227 hasConceptScore W4320802227C518677369 @default.
- W4320802227 hasConceptScore W4320802227C52001869 @default.
- W4320802227 hasConceptScore W4320802227C66402592 @default.
- W4320802227 hasConceptScore W4320802227C95623464 @default.
- W4320802227 hasLocation W43208022271 @default.
- W4320802227 hasOpenAccess W4320802227 @default.
- W4320802227 hasPrimaryLocation W43208022271 @default.
- W4320802227 hasRelatedWork W2595988085 @default.
- W4320802227 hasRelatedWork W2741836081 @default.
- W4320802227 hasRelatedWork W2979979539 @default.
- W4320802227 hasRelatedWork W3136979370 @default.
- W4320802227 hasRelatedWork W3192794374 @default.
- W4320802227 hasRelatedWork W3213901898 @default.
- W4320802227 hasRelatedWork W4205958290 @default.
- W4320802227 hasRelatedWork W4311106074 @default.
- W4320802227 hasRelatedWork W4360986142 @default.
- W4320802227 hasRelatedWork W4362613237 @default.
- W4320802227 isParatext "false" @default.
- W4320802227 isRetracted "false" @default.
- W4320802227 workType "article" @default.