Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320836344> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4320836344 abstract "The arrival time prediction of Coronal mass ejections (CMEs) is an area of active research. Many methods with varying levels of complexity have been developed to predict CME arrival. However, the mean absolute error (MAE) of predictions remains above 12 hours, even with the increasing complexity of methods. In this work we develop a new method for CME arrival time prediction that uses magnetohydrodynamic simulations involving data-constrained flux-rope-based CMEs, which are introduced in a data-driven solar wind background. We found that, for 6 CMEs studied in this work, the MAE in arrival time was ~8 hours. We further improved our arrival time predictions by using ensemble modeling and comparing the ensemble solutions with STEREO-A&B heliospheric imager data. This was done by using our simulations to create synthetic J-maps. A machine learning (ML) method called the lasso regression was used for this comparison. Using this approach, we could reduce the MAE to ~4 hours. Another ML method based on the neural networks (NNs) made it possible to reduce the MAE to ~5 hours for the cases when HI data from both STEREO-A&B were available. NNs are capable of providing similar MAE when only the STEREO-A data is used. Our methods also resulted in very encouraging values of standard deviation (precision) of arrival time. The methods discussed in this paper demonstrate significant improvements in the CME arrival time predictions. Our work highlights the importance of using ML techniques in combination with data-constrained magnetohydrodynamic modeling to improve space weather predictions." @default.
- W4320836344 created "2023-02-15" @default.
- W4320836344 creator A5001718372 @default.
- W4320836344 creator A5015165320 @default.
- W4320836344 creator A5020921372 @default.
- W4320836344 creator A5023575778 @default.
- W4320836344 creator A5027629446 @default.
- W4320836344 creator A5039226251 @default.
- W4320836344 creator A5062576626 @default.
- W4320836344 date "2023-02-10" @default.
- W4320836344 modified "2023-09-27" @default.
- W4320836344 title "Improving the Arrival Time Estimates of Coronal Mass Ejections by Using Magnetohydrodynamic Ensemble Modeling, Heliospheric Imager data, and Machine Learning" @default.
- W4320836344 doi "https://doi.org/10.48550/arxiv.2302.05588" @default.
- W4320836344 hasPublicationYear "2023" @default.
- W4320836344 type Work @default.
- W4320836344 citedByCount "0" @default.
- W4320836344 crossrefType "posted-content" @default.
- W4320836344 hasAuthorship W4320836344A5001718372 @default.
- W4320836344 hasAuthorship W4320836344A5015165320 @default.
- W4320836344 hasAuthorship W4320836344A5020921372 @default.
- W4320836344 hasAuthorship W4320836344A5023575778 @default.
- W4320836344 hasAuthorship W4320836344A5027629446 @default.
- W4320836344 hasAuthorship W4320836344A5039226251 @default.
- W4320836344 hasAuthorship W4320836344A5062576626 @default.
- W4320836344 hasConcept C108411613 @default.
- W4320836344 hasConcept C11413529 @default.
- W4320836344 hasConcept C119857082 @default.
- W4320836344 hasConcept C121332964 @default.
- W4320836344 hasConcept C127413603 @default.
- W4320836344 hasConcept C151325931 @default.
- W4320836344 hasConcept C153294291 @default.
- W4320836344 hasConcept C163150518 @default.
- W4320836344 hasConcept C22212356 @default.
- W4320836344 hasConcept C3017552255 @default.
- W4320836344 hasConcept C31532427 @default.
- W4320836344 hasConcept C41008148 @default.
- W4320836344 hasConcept C42471609 @default.
- W4320836344 hasConcept C50644808 @default.
- W4320836344 hasConcept C555944384 @default.
- W4320836344 hasConcept C62520636 @default.
- W4320836344 hasConcept C72886185 @default.
- W4320836344 hasConcept C76155785 @default.
- W4320836344 hasConcept C82706917 @default.
- W4320836344 hasConceptScore W4320836344C108411613 @default.
- W4320836344 hasConceptScore W4320836344C11413529 @default.
- W4320836344 hasConceptScore W4320836344C119857082 @default.
- W4320836344 hasConceptScore W4320836344C121332964 @default.
- W4320836344 hasConceptScore W4320836344C127413603 @default.
- W4320836344 hasConceptScore W4320836344C151325931 @default.
- W4320836344 hasConceptScore W4320836344C153294291 @default.
- W4320836344 hasConceptScore W4320836344C163150518 @default.
- W4320836344 hasConceptScore W4320836344C22212356 @default.
- W4320836344 hasConceptScore W4320836344C3017552255 @default.
- W4320836344 hasConceptScore W4320836344C31532427 @default.
- W4320836344 hasConceptScore W4320836344C41008148 @default.
- W4320836344 hasConceptScore W4320836344C42471609 @default.
- W4320836344 hasConceptScore W4320836344C50644808 @default.
- W4320836344 hasConceptScore W4320836344C555944384 @default.
- W4320836344 hasConceptScore W4320836344C62520636 @default.
- W4320836344 hasConceptScore W4320836344C72886185 @default.
- W4320836344 hasConceptScore W4320836344C76155785 @default.
- W4320836344 hasConceptScore W4320836344C82706917 @default.
- W4320836344 hasLocation W43208363441 @default.
- W4320836344 hasOpenAccess W4320836344 @default.
- W4320836344 hasPrimaryLocation W43208363441 @default.
- W4320836344 hasRelatedWork W1636718316 @default.
- W4320836344 hasRelatedWork W1974621253 @default.
- W4320836344 hasRelatedWork W3103534029 @default.
- W4320836344 hasRelatedWork W3128910884 @default.
- W4320836344 hasRelatedWork W3162352462 @default.
- W4320836344 hasRelatedWork W4213118542 @default.
- W4320836344 hasRelatedWork W4221037255 @default.
- W4320836344 hasRelatedWork W4221112073 @default.
- W4320836344 hasRelatedWork W4292103669 @default.
- W4320836344 hasRelatedWork W96062847 @default.
- W4320836344 isParatext "false" @default.
- W4320836344 isRetracted "false" @default.
- W4320836344 workType "article" @default.