Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320855870> ?p ?o ?g. }
- W4320855870 endingPage "153303382311579" @default.
- W4320855870 startingPage "153303382311579" @default.
- W4320855870 abstract "Purpose/Objective(s): With the development of deep learning, more convolutional neural networks (CNNs) are being introduced in automatic segmentation to reduce oncologists’ labor requirement. However, it is still challenging for oncologists to spend considerable time evaluating the quality of the contours generated by the CNNs. Besides, all the evaluation criteria, such as Dice Similarity Coefficient (DSC), need a gold standard to assess the quality of the contours. To address these problems, we propose an automatic quality assurance (QA) method using isotropic and anisotropic methods to automatically analyze contour quality without a gold standard. Materials/Methods: We used 196 individuals with 18 different head-and-neck organs-at-risk. The overall process has the following 4 main steps. (1) Use CNN segmentation network to generate a series of contours, then use these contours as organ masks to erode and dilate to generate inner/outer shells for each 2D slice. (2) Thirty-eight radiomics features were extracted from these 2 shells, using the inner/outer shells’ radiomics features ratios and DSCs as the input for 12 machine learning models. (3) Using the DSC threshold adaptively classified the passing/un-passing slices. (4) Through 2 different threshold analysis methods quantitatively evaluated the un-passing slices and obtained a series of location information of poor contours. Parts 1-3 were isotropic experiments, and part 4 was the anisotropic method. Result: From the isotropic experiments, almost all the predicted values were close to the labels. Through the anisotropic method, we obtained the contours’ location information by assessing the thresholds of the peak-to-peak and area-to-area ratios. Conclusion: The proposed automatic segmentation QA method could predict the segmentation quality qualitatively. Moreover, the method can analyze the location information for un-passing slices." @default.
- W4320855870 created "2023-02-16" @default.
- W4320855870 creator A5030009218 @default.
- W4320855870 creator A5036879993 @default.
- W4320855870 creator A5059985080 @default.
- W4320855870 creator A5074045013 @default.
- W4320855870 creator A5081665128 @default.
- W4320855870 creator A5086403061 @default.
- W4320855870 date "2023-01-01" @default.
- W4320855870 modified "2023-10-01" @default.
- W4320855870 title "Machine Learning-Based Quality Assurance for Automatic Segmentation of Head-and-Neck Organs-at-Risk in Radiotherapy" @default.
- W4320855870 cites W1901129140 @default.
- W4320855870 cites W1909740415 @default.
- W4320855870 cites W1993119177 @default.
- W4320855870 cites W2012478287 @default.
- W4320855870 cites W2028790322 @default.
- W4320855870 cites W2044465660 @default.
- W4320855870 cites W2127668516 @default.
- W4320855870 cites W2128817056 @default.
- W4320855870 cites W2134512579 @default.
- W4320855870 cites W2152014572 @default.
- W4320855870 cites W2460470859 @default.
- W4320855870 cites W2560725027 @default.
- W4320855870 cites W2625559849 @default.
- W4320855870 cites W2748063510 @default.
- W4320855870 cites W2757454662 @default.
- W4320855870 cites W2773960327 @default.
- W4320855870 cites W2799142782 @default.
- W4320855870 cites W2887976372 @default.
- W4320855870 cites W2888667538 @default.
- W4320855870 cites W2900237898 @default.
- W4320855870 cites W2962914239 @default.
- W4320855870 cites W2963908753 @default.
- W4320855870 cites W3027179809 @default.
- W4320855870 cites W3093659380 @default.
- W4320855870 cites W3192219368 @default.
- W4320855870 cites W4280563501 @default.
- W4320855870 cites W4292552144 @default.
- W4320855870 cites W4300687546 @default.
- W4320855870 doi "https://doi.org/10.1177/15330338231157936" @default.
- W4320855870 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36788411" @default.
- W4320855870 hasPublicationYear "2023" @default.
- W4320855870 type Work @default.
- W4320855870 citedByCount "3" @default.
- W4320855870 countsByYear W43208558702023 @default.
- W4320855870 crossrefType "journal-article" @default.
- W4320855870 hasAuthorship W4320855870A5030009218 @default.
- W4320855870 hasAuthorship W4320855870A5036879993 @default.
- W4320855870 hasAuthorship W4320855870A5059985080 @default.
- W4320855870 hasAuthorship W4320855870A5074045013 @default.
- W4320855870 hasAuthorship W4320855870A5081665128 @default.
- W4320855870 hasAuthorship W4320855870A5086403061 @default.
- W4320855870 hasBestOaLocation W43208558701 @default.
- W4320855870 hasConcept C103278499 @default.
- W4320855870 hasConcept C105795698 @default.
- W4320855870 hasConcept C106436119 @default.
- W4320855870 hasConcept C108583219 @default.
- W4320855870 hasConcept C115961682 @default.
- W4320855870 hasConcept C120665830 @default.
- W4320855870 hasConcept C121332964 @default.
- W4320855870 hasConcept C124504099 @default.
- W4320855870 hasConcept C141071460 @default.
- W4320855870 hasConcept C142724271 @default.
- W4320855870 hasConcept C153180895 @default.
- W4320855870 hasConcept C154945302 @default.
- W4320855870 hasConcept C163892561 @default.
- W4320855870 hasConcept C184050105 @default.
- W4320855870 hasConcept C2778618615 @default.
- W4320855870 hasConcept C3018411727 @default.
- W4320855870 hasConcept C31972630 @default.
- W4320855870 hasConcept C33923547 @default.
- W4320855870 hasConcept C40993552 @default.
- W4320855870 hasConcept C41008148 @default.
- W4320855870 hasConcept C50644808 @default.
- W4320855870 hasConcept C71924100 @default.
- W4320855870 hasConcept C81363708 @default.
- W4320855870 hasConcept C89600930 @default.
- W4320855870 hasConceptScore W4320855870C103278499 @default.
- W4320855870 hasConceptScore W4320855870C105795698 @default.
- W4320855870 hasConceptScore W4320855870C106436119 @default.
- W4320855870 hasConceptScore W4320855870C108583219 @default.
- W4320855870 hasConceptScore W4320855870C115961682 @default.
- W4320855870 hasConceptScore W4320855870C120665830 @default.
- W4320855870 hasConceptScore W4320855870C121332964 @default.
- W4320855870 hasConceptScore W4320855870C124504099 @default.
- W4320855870 hasConceptScore W4320855870C141071460 @default.
- W4320855870 hasConceptScore W4320855870C142724271 @default.
- W4320855870 hasConceptScore W4320855870C153180895 @default.
- W4320855870 hasConceptScore W4320855870C154945302 @default.
- W4320855870 hasConceptScore W4320855870C163892561 @default.
- W4320855870 hasConceptScore W4320855870C184050105 @default.
- W4320855870 hasConceptScore W4320855870C2778618615 @default.
- W4320855870 hasConceptScore W4320855870C3018411727 @default.
- W4320855870 hasConceptScore W4320855870C31972630 @default.
- W4320855870 hasConceptScore W4320855870C33923547 @default.
- W4320855870 hasConceptScore W4320855870C40993552 @default.
- W4320855870 hasConceptScore W4320855870C41008148 @default.
- W4320855870 hasConceptScore W4320855870C50644808 @default.