Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320856716> ?p ?o ?g. }
- W4320856716 endingPage "e42985" @default.
- W4320856716 startingPage "e42985" @default.
- W4320856716 abstract "Background By the end of 2022, more than 100 million people were infected with COVID-19 in the United States, and the cumulative death rate in rural areas (383.5/100,000) was much higher than in urban areas (280.1/100,000). As the pandemic spread, people used social media platforms to express their opinions and concerns about COVID-19–related topics. Objective This study aimed to (1) identify the primary COVID-19–related topics in the contiguous United States communicated over Twitter and (2) compare the sentiments urban and rural users expressed about these topics. Methods We collected tweets containing geolocation data from May 2020 to January 2022 in the contiguous United States. We relied on the tweets’ geolocations to determine if their authors were in an urban or rural setting. We trained multiple word2vec models with several corpora of tweets based on geospatial and timing information. Using a word2vec model built on all tweets, we identified hashtags relevant to COVID-19 and performed hashtag clustering to obtain related topics. We then ran an inference analysis for urban and rural sentiments with respect to the topics based on the similarity between topic hashtags and opinion adjectives in the corresponding urban and rural word2vec models. Finally, we analyzed the temporal trend in sentiments using monthly word2vec models. Results We created a corpus of 407 million tweets, 350 million (86%) of which were posted by users in urban areas, while 18 million (4.4%) were posted by users in rural areas. There were 2666 hashtags related to COVID-19, which clustered into 20 topics. Rural users expressed stronger negative sentiments than urban users about COVID-19 prevention strategies and vaccination (P<.001). Moreover, there was a clear political divide in the perception of politicians by urban and rural users; these users communicated stronger negative sentiments about Republican and Democratic politicians, respectively (P<.001). Regarding misinformation and conspiracy theories, urban users exhibited stronger negative sentiments about the “covidiots” and “China virus” topics, while rural users exhibited stronger negative sentiments about the “Dr. Fauci” and “plandemic” topics. Finally, we observed that urban users’ sentiments about the economy appeared to transition from negative to positive in late 2021, which was in line with the US economic recovery. Conclusions This study demonstrates there is a statistically significant difference in the sentiments of urban and rural Twitter users regarding a wide range of COVID-19–related topics. This suggests that social media can be relied upon to monitor public sentiment during pandemics in disparate types of regions. This may assist in the geographically targeted deployment of epidemic prevention and management efforts." @default.
- W4320856716 created "2023-02-16" @default.
- W4320856716 creator A5002556086 @default.
- W4320856716 creator A5011499465 @default.
- W4320856716 creator A5044889004 @default.
- W4320856716 creator A5053675776 @default.
- W4320856716 creator A5079247989 @default.
- W4320856716 creator A5090647314 @default.
- W4320856716 date "2023-02-15" @default.
- W4320856716 modified "2023-09-26" @default.
- W4320856716 title "Examining Rural and Urban Sentiment Difference in COVID-19–Related Topics on Twitter: Word Embedding–Based Retrospective Study" @default.
- W4320856716 cites W1714665356 @default.
- W4320856716 cites W1880262756 @default.
- W4320856716 cites W2077669887 @default.
- W4320856716 cites W2099813784 @default.
- W4320856716 cites W2165533158 @default.
- W4320856716 cites W2408186052 @default.
- W4320856716 cites W2601243251 @default.
- W4320856716 cites W2621301708 @default.
- W4320856716 cites W2769358515 @default.
- W4320856716 cites W2794106272 @default.
- W4320856716 cites W2887928931 @default.
- W4320856716 cites W2889326414 @default.
- W4320856716 cites W2893425640 @default.
- W4320856716 cites W2925098120 @default.
- W4320856716 cites W2945091031 @default.
- W4320856716 cites W2945395591 @default.
- W4320856716 cites W2947838898 @default.
- W4320856716 cites W3009601661 @default.
- W4320856716 cites W3015218641 @default.
- W4320856716 cites W3025636516 @default.
- W4320856716 cites W3027070829 @default.
- W4320856716 cites W3035119815 @default.
- W4320856716 cites W3037619012 @default.
- W4320856716 cites W3088268279 @default.
- W4320856716 cites W3096451393 @default.
- W4320856716 cites W3103145424 @default.
- W4320856716 cites W3103365499 @default.
- W4320856716 cites W3106630204 @default.
- W4320856716 cites W3117864197 @default.
- W4320856716 cites W3129318751 @default.
- W4320856716 cites W3133296522 @default.
- W4320856716 cites W3133818858 @default.
- W4320856716 cites W3135979406 @default.
- W4320856716 cites W3138763261 @default.
- W4320856716 cites W3145824801 @default.
- W4320856716 cites W3158325128 @default.
- W4320856716 cites W3160817625 @default.
- W4320856716 cites W3168865200 @default.
- W4320856716 cites W3171261489 @default.
- W4320856716 cites W3173991475 @default.
- W4320856716 cites W3176412650 @default.
- W4320856716 cites W3181529496 @default.
- W4320856716 cites W3187341546 @default.
- W4320856716 cites W3208536389 @default.
- W4320856716 cites W3210052897 @default.
- W4320856716 cites W4220659222 @default.
- W4320856716 cites W4285321107 @default.
- W4320856716 doi "https://doi.org/10.2196/42985" @default.
- W4320856716 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36790847" @default.
- W4320856716 hasPublicationYear "2023" @default.
- W4320856716 type Work @default.
- W4320856716 citedByCount "2" @default.
- W4320856716 countsByYear W43208567162023 @default.
- W4320856716 crossrefType "journal-article" @default.
- W4320856716 hasAuthorship W4320856716A5002556086 @default.
- W4320856716 hasAuthorship W4320856716A5011499465 @default.
- W4320856716 hasAuthorship W4320856716A5044889004 @default.
- W4320856716 hasAuthorship W4320856716A5053675776 @default.
- W4320856716 hasAuthorship W4320856716A5079247989 @default.
- W4320856716 hasAuthorship W4320856716A5090647314 @default.
- W4320856716 hasBestOaLocation W43208567161 @default.
- W4320856716 hasConcept C136764020 @default.
- W4320856716 hasConcept C154945302 @default.
- W4320856716 hasConcept C171686336 @default.
- W4320856716 hasConcept C205649164 @default.
- W4320856716 hasConcept C22041718 @default.
- W4320856716 hasConcept C23123220 @default.
- W4320856716 hasConcept C2522767166 @default.
- W4320856716 hasConcept C2776461190 @default.
- W4320856716 hasConcept C2777462759 @default.
- W4320856716 hasConcept C41008148 @default.
- W4320856716 hasConcept C41608201 @default.
- W4320856716 hasConcept C518677369 @default.
- W4320856716 hasConcept C53605480 @default.
- W4320856716 hasConcept C58640448 @default.
- W4320856716 hasConcept C66402592 @default.
- W4320856716 hasConcept C9770341 @default.
- W4320856716 hasConceptScore W4320856716C136764020 @default.
- W4320856716 hasConceptScore W4320856716C154945302 @default.
- W4320856716 hasConceptScore W4320856716C171686336 @default.
- W4320856716 hasConceptScore W4320856716C205649164 @default.
- W4320856716 hasConceptScore W4320856716C22041718 @default.
- W4320856716 hasConceptScore W4320856716C23123220 @default.
- W4320856716 hasConceptScore W4320856716C2522767166 @default.
- W4320856716 hasConceptScore W4320856716C2776461190 @default.
- W4320856716 hasConceptScore W4320856716C2777462759 @default.
- W4320856716 hasConceptScore W4320856716C41008148 @default.