Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320856721> ?p ?o ?g. }
- W4320856721 endingPage "865" @default.
- W4320856721 startingPage "846" @default.
- W4320856721 abstract "Background: Epigenetic reprogramming has been reported to play a critical role in the progression of thyroid cancer. RNA methylation accounts for more than 60% of all RNA modifications, and N6-methyladenosine (m6A) is the most common modification of RNAs in higher organisms. The purpose of this study was to explore the related modification mode of m6A regulators construction and its evaluation on the clinical prognosis and therapeutic effect of thyroid cancer. Methods: The levels of 23 m6A regulators in The Cancer Genome Atlas (TCGA) were analyzed. Differentially expressed genes (DEGs) and survival analysis were performed based on TCGA-THCA clinicopathological and follow-up information, and the mRNA levels of representative genes were verified using clinical thyroid cancer data. In order to detect the effects of m6A regulators and their DEGs, consensus cluster analysis was carried out, and the expression of different m6A scores in Tumor Mutation Burden (TMB) and immune double antibodies (PD-1 antibody and CTLA4 antibody) were evaluated to predict the correlation between m6A score and thyroid cancer tumor immunotherapy response. Results: Different expression patterns of m6A regulatory factors were detected in thyroid cancer tumors and normal tissues, and several prognoses related m6A genes were obtained. Two different m6A modification patterns were determined by consensus cluster analysis. Two different subgroups were established by screening overlapping DEGs between two m6A clusters, with cluster A having the best prognosis. According to the m6A score extracted from DEGs, thyroid cancer patients can be divided into high and low score subgroups. Patients with lower m6A score have longer survival time and better clinical features. The relationship between m6A score and Tumor Mutation Burden (TMB) and its correlation with the expression of PD-1 antibody and CTLA4 antibody proved that m6A score could be used as a potential predictor of the efficacy of immunotherapy in thyroid cancer patients. Conclusions: We screened DEGs from cluster m6A and constructed a highly predictive model with prognostic value by dividing TCGA-THCA into two different clusters and performing m6A score analysis. This study will help clarify the overall impact of m6A modification patterns on thyroid cancer progression and formulate more effective immunotherapy strategies." @default.
- W4320856721 created "2023-02-16" @default.
- W4320856721 creator A5004441509 @default.
- W4320856721 creator A5029417946 @default.
- W4320856721 creator A5033713296 @default.
- W4320856721 creator A5052742609 @default.
- W4320856721 creator A5053242802 @default.
- W4320856721 creator A5061899930 @default.
- W4320856721 creator A5065037360 @default.
- W4320856721 creator A5061291408 @default.
- W4320856721 date "2023-02-14" @default.
- W4320856721 modified "2023-09-27" @default.
- W4320856721 title "Thyroid cancer risk prediction model using m6A RNA methylation regulators: integrated bioinformatics analysis and histological validation" @default.
- W4320856721 cites W2257916459 @default.
- W4320856721 cites W2529896336 @default.
- W4320856721 cites W2538232731 @default.
- W4320856721 cites W2726460771 @default.
- W4320856721 cites W2737010615 @default.
- W4320856721 cites W2829377719 @default.
- W4320856721 cites W2895923730 @default.
- W4320856721 cites W2909024320 @default.
- W4320856721 cites W2921211860 @default.
- W4320856721 cites W2947674709 @default.
- W4320856721 cites W2950126013 @default.
- W4320856721 cites W2972933339 @default.
- W4320856721 cites W2992958546 @default.
- W4320856721 cites W3002986055 @default.
- W4320856721 cites W3012468089 @default.
- W4320856721 cites W3019748358 @default.
- W4320856721 cites W3026431630 @default.
- W4320856721 cites W3028187297 @default.
- W4320856721 cites W3081140953 @default.
- W4320856721 cites W3083403433 @default.
- W4320856721 cites W3097514211 @default.
- W4320856721 cites W3107627756 @default.
- W4320856721 cites W3110871622 @default.
- W4320856721 cites W3124070407 @default.
- W4320856721 cites W3126958368 @default.
- W4320856721 cites W3128375519 @default.
- W4320856721 cites W3128646645 @default.
- W4320856721 cites W3128936547 @default.
- W4320856721 cites W3135644951 @default.
- W4320856721 cites W3150425628 @default.
- W4320856721 cites W3181744037 @default.
- W4320856721 cites W3193736779 @default.
- W4320856721 cites W3193856798 @default.
- W4320856721 cites W3195133237 @default.
- W4320856721 cites W3200584539 @default.
- W4320856721 cites W3206007153 @default.
- W4320856721 cites W3212862531 @default.
- W4320856721 cites W3217717702 @default.
- W4320856721 cites W4200138902 @default.
- W4320856721 cites W4200260682 @default.
- W4320856721 cites W4200270905 @default.
- W4320856721 cites W4200272617 @default.
- W4320856721 cites W4200417088 @default.
- W4320856721 cites W4200441611 @default.
- W4320856721 cites W4200601284 @default.
- W4320856721 cites W4220885765 @default.
- W4320856721 cites W4220886525 @default.
- W4320856721 cites W4220925293 @default.
- W4320856721 cites W4229043487 @default.
- W4320856721 cites W4317907188 @default.
- W4320856721 doi "https://doi.org/10.18632/aging.204525" @default.
- W4320856721 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36791151" @default.
- W4320856721 hasPublicationYear "2023" @default.
- W4320856721 type Work @default.
- W4320856721 citedByCount "0" @default.
- W4320856721 crossrefType "journal-article" @default.
- W4320856721 hasAuthorship W4320856721A5004441509 @default.
- W4320856721 hasAuthorship W4320856721A5029417946 @default.
- W4320856721 hasAuthorship W4320856721A5033713296 @default.
- W4320856721 hasAuthorship W4320856721A5052742609 @default.
- W4320856721 hasAuthorship W4320856721A5053242802 @default.
- W4320856721 hasAuthorship W4320856721A5061291408 @default.
- W4320856721 hasAuthorship W4320856721A5061899930 @default.
- W4320856721 hasAuthorship W4320856721A5065037360 @default.
- W4320856721 hasBestOaLocation W43208567211 @default.
- W4320856721 hasConcept C104317684 @default.
- W4320856721 hasConcept C121608353 @default.
- W4320856721 hasConcept C126322002 @default.
- W4320856721 hasConcept C143998085 @default.
- W4320856721 hasConcept C2779761222 @default.
- W4320856721 hasConcept C33288867 @default.
- W4320856721 hasConcept C41091548 @default.
- W4320856721 hasConcept C502942594 @default.
- W4320856721 hasConcept C54355233 @default.
- W4320856721 hasConcept C60644358 @default.
- W4320856721 hasConcept C67705224 @default.
- W4320856721 hasConcept C70721500 @default.
- W4320856721 hasConcept C71924100 @default.
- W4320856721 hasConcept C86803240 @default.
- W4320856721 hasConceptScore W4320856721C104317684 @default.
- W4320856721 hasConceptScore W4320856721C121608353 @default.
- W4320856721 hasConceptScore W4320856721C126322002 @default.
- W4320856721 hasConceptScore W4320856721C143998085 @default.
- W4320856721 hasConceptScore W4320856721C2779761222 @default.
- W4320856721 hasConceptScore W4320856721C33288867 @default.