Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320857137> ?p ?o ?g. }
- W4320857137 abstract "Maintenance hemodialysis (MHD) patients often suffer from sarcopenia, which is strongly associated with their long-term mortality. The diagnosis and treatment of sarcopenia, especially possible sarcopenia for MHD patients are of great importance. This study aims to use machine learning and medical data to develop two simple sarcopenia identification assistant tools for MHD patients and focuses on sex specificity.Data were retrospectively collected from patients undergoing MHD and included patients' basic information, body measurement results and laboratory findings. The 2019 consensus update by Asian working group for sarcopenia was used to assess whether a MHD patient had sarcopenia. Finally, 140 male (58 with possible sarcopenia or sarcopenia) and 102 female (65 with possible sarcopenia or sarcopenia) patients' data were collected. Participants were divided into sarcopenia and control groups for each sex to develop binary classifiers. After statistical analysis and feature selection, stratified shuffle split and Synthetic Minority Oversampling Technique were conducted and voting classifiers were developed.After eliminating handgrip strength, 6-m walk, and skeletal muscle index, the best three features for sarcopenia identification of male patients are age, fasting blood glucose, and parathyroid hormone. Meanwhile, age, arm without vascular access, total bilirubin, and post-dialysis creatinine are the best four features for females. After abandoning models with overfitting or bad performance, voting classifiers achieved good sarcopenia classification performance for both sexes (For males: sensitivity: 77.50% ± 11.21%, specificity: 83.13% ± 9.70%, F1 score: 77.32% ± 5.36%, the area under the receiver operating characteristic curves (AUC): 87.40% ± 4.41%. For females: sensitivity: 76.15% ± 13.95%, specificity: 71.25% ± 15.86%, F1 score: 78.04% ± 8.85%, AUC: 77.69% ± 7.92%).Two simple sex-specific sarcopenia identification tools for MHD patients were developed. They performed well on the case finding of sarcopenia, especially possible sarcopenia." @default.
- W4320857137 created "2023-02-16" @default.
- W4320857137 creator A5002162813 @default.
- W4320857137 creator A5006327312 @default.
- W4320857137 creator A5020819058 @default.
- W4320857137 creator A5031322299 @default.
- W4320857137 creator A5038652862 @default.
- W4320857137 creator A5040272999 @default.
- W4320857137 creator A5049781871 @default.
- W4320857137 creator A5051619048 @default.
- W4320857137 creator A5061693850 @default.
- W4320857137 creator A5085680339 @default.
- W4320857137 date "2023-02-14" @default.
- W4320857137 modified "2023-10-16" @default.
- W4320857137 title "Use machine learning to help identify possible sarcopenia cases in maintenance hemodialysis patients" @default.
- W4320857137 cites W2030174339 @default.
- W4320857137 cites W2072548754 @default.
- W4320857137 cites W2106342888 @default.
- W4320857137 cites W2115183629 @default.
- W4320857137 cites W2124972954 @default.
- W4320857137 cites W2132996843 @default.
- W4320857137 cites W2136191489 @default.
- W4320857137 cites W2137415798 @default.
- W4320857137 cites W2141421993 @default.
- W4320857137 cites W2148143831 @default.
- W4320857137 cites W2170505850 @default.
- W4320857137 cites W2177870565 @default.
- W4320857137 cites W2227033802 @default.
- W4320857137 cites W2282323120 @default.
- W4320857137 cites W2322983841 @default.
- W4320857137 cites W2401281820 @default.
- W4320857137 cites W2443303790 @default.
- W4320857137 cites W2521378032 @default.
- W4320857137 cites W2526199871 @default.
- W4320857137 cites W2559727425 @default.
- W4320857137 cites W2583941575 @default.
- W4320857137 cites W2769725033 @default.
- W4320857137 cites W2783683034 @default.
- W4320857137 cites W2791315675 @default.
- W4320857137 cites W2794152698 @default.
- W4320857137 cites W2801971194 @default.
- W4320857137 cites W2802067770 @default.
- W4320857137 cites W2808991254 @default.
- W4320857137 cites W2897513125 @default.
- W4320857137 cites W2911964244 @default.
- W4320857137 cites W2919072025 @default.
- W4320857137 cites W2919200815 @default.
- W4320857137 cites W2955837354 @default.
- W4320857137 cites W2982172055 @default.
- W4320857137 cites W2984161770 @default.
- W4320857137 cites W3005437800 @default.
- W4320857137 cites W3009860442 @default.
- W4320857137 cites W3011019387 @default.
- W4320857137 cites W3020705378 @default.
- W4320857137 cites W3087383324 @default.
- W4320857137 cites W3094882899 @default.
- W4320857137 cites W3142708737 @default.
- W4320857137 cites W3171704922 @default.
- W4320857137 cites W3178465744 @default.
- W4320857137 cites W3192186764 @default.
- W4320857137 cites W3201924985 @default.
- W4320857137 cites W4206900923 @default.
- W4320857137 cites W4226458314 @default.
- W4320857137 doi "https://doi.org/10.1186/s12882-023-03084-7" @default.
- W4320857137 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36788486" @default.
- W4320857137 hasPublicationYear "2023" @default.
- W4320857137 type Work @default.
- W4320857137 citedByCount "2" @default.
- W4320857137 countsByYear W43208571372023 @default.
- W4320857137 crossrefType "journal-article" @default.
- W4320857137 hasAuthorship W4320857137A5002162813 @default.
- W4320857137 hasAuthorship W4320857137A5006327312 @default.
- W4320857137 hasAuthorship W4320857137A5020819058 @default.
- W4320857137 hasAuthorship W4320857137A5031322299 @default.
- W4320857137 hasAuthorship W4320857137A5038652862 @default.
- W4320857137 hasAuthorship W4320857137A5040272999 @default.
- W4320857137 hasAuthorship W4320857137A5049781871 @default.
- W4320857137 hasAuthorship W4320857137A5051619048 @default.
- W4320857137 hasAuthorship W4320857137A5061693850 @default.
- W4320857137 hasAuthorship W4320857137A5085680339 @default.
- W4320857137 hasBestOaLocation W43208571371 @default.
- W4320857137 hasConcept C126322002 @default.
- W4320857137 hasConcept C2776214593 @default.
- W4320857137 hasConcept C2778063415 @default.
- W4320857137 hasConcept C58471807 @default.
- W4320857137 hasConcept C71924100 @default.
- W4320857137 hasConceptScore W4320857137C126322002 @default.
- W4320857137 hasConceptScore W4320857137C2776214593 @default.
- W4320857137 hasConceptScore W4320857137C2778063415 @default.
- W4320857137 hasConceptScore W4320857137C58471807 @default.
- W4320857137 hasConceptScore W4320857137C71924100 @default.
- W4320857137 hasIssue "1" @default.
- W4320857137 hasLocation W43208571371 @default.
- W4320857137 hasLocation W43208571372 @default.
- W4320857137 hasLocation W43208571373 @default.
- W4320857137 hasOpenAccess W4320857137 @default.
- W4320857137 hasPrimaryLocation W43208571371 @default.
- W4320857137 hasRelatedWork W113810927 @default.
- W4320857137 hasRelatedWork W1984576678 @default.
- W4320857137 hasRelatedWork W1989911654 @default.