Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320857501> ?p ?o ?g. }
- W4320857501 endingPage "e0280670" @default.
- W4320857501 startingPage "e0280670" @default.
- W4320857501 abstract "Background and objectives The incidence of skin cancer is rising worldwide and there is medical need to optimize its early detection. This study was conducted to determine the diagnostic and risk-assessment accuracy of two new diagnosis-based neural networks (analyze and detect), which comply with the CE-criteria, in evaluating the malignant potential of various skin lesions on a smartphone. Of note, the intention of our study was to evaluate the performance of these medical products in a clinical setting for the first time. Methods This was a prospective, single-center clinical study at one tertiary referral center in Graz, Austria. Patients, who were either scheduled for preventive skin examination or removal of at least one skin lesion were eligible for participation. Patients were assessed by at least two dermatologists and by the integrated algorithms on different mobile phones. The lesions to be recorded were randomly selected by the dermatologists. The diagnosis of the algorithm was stated as correct if it matched the diagnosis of the two dermatologists or the histology (if available). The histology was the reference standard, however, if both clinicians considered a lesion as being benign no histology was performed and the dermatologists were stated as reference standard. Results A total of 238 patients with 1171 lesions (86 female; 36.13%) with an average age of 66.19 (SD = 17.05) was included. Sensitivity and specificity of the detect algorithm were 96.4% (CI 93.94–98.85) and 94.85% (CI 92.46–97.23); for the analyze algorithm a sensitivity of 95.35% (CI 93.45–97.25) and a specificity of 90.32% (CI 88.1–92.54) were achieved. Discussion The studied neural networks succeeded analyzing the risk of skin lesions with a high diagnostic accuracy showing that they are sufficient tools in calculating the probability of a skin lesion being malignant. In conjunction with the wide spread use of smartphones this new AI approach opens the opportunity for a higher early detection rate of skin cancer with consecutive lower epidemiological burden of metastatic cancer and reducing health care costs. This neural network moreover facilitates the empowerment of patients, especially in regions with a low density of medical doctors. Registration Approved and registered at the ethics committee of the Medical University of Graz, Austria (Approval number: 30–199 ex 17/18)." @default.
- W4320857501 created "2023-02-16" @default.
- W4320857501 creator A5008065839 @default.
- W4320857501 creator A5009132881 @default.
- W4320857501 creator A5027666165 @default.
- W4320857501 creator A5066481158 @default.
- W4320857501 creator A5071532116 @default.
- W4320857501 creator A5085275146 @default.
- W4320857501 date "2023-02-15" @default.
- W4320857501 modified "2023-10-18" @default.
- W4320857501 title "New AI-algorithms on smartphones to detect skin cancer in a clinical setting—A validation study" @default.
- W4320857501 cites W1529230314 @default.
- W4320857501 cites W1586650777 @default.
- W4320857501 cites W1971953839 @default.
- W4320857501 cites W1975502721 @default.
- W4320857501 cites W1977112894 @default.
- W4320857501 cites W2011342967 @default.
- W4320857501 cites W2011726315 @default.
- W4320857501 cites W2100506635 @default.
- W4320857501 cites W2133415133 @default.
- W4320857501 cites W2143902340 @default.
- W4320857501 cites W2146086092 @default.
- W4320857501 cites W2147215528 @default.
- W4320857501 cites W2277588952 @default.
- W4320857501 cites W2397962830 @default.
- W4320857501 cites W2581082771 @default.
- W4320857501 cites W2618204361 @default.
- W4320857501 cites W2786147899 @default.
- W4320857501 cites W2885738414 @default.
- W4320857501 cites W2886914906 @default.
- W4320857501 cites W2888442043 @default.
- W4320857501 cites W2891858760 @default.
- W4320857501 cites W2896765302 @default.
- W4320857501 cites W2912389004 @default.
- W4320857501 cites W2921785317 @default.
- W4320857501 cites W2924767581 @default.
- W4320857501 cites W2931049987 @default.
- W4320857501 cites W2937742783 @default.
- W4320857501 cites W2946260418 @default.
- W4320857501 cites W2951071478 @default.
- W4320857501 cites W2952313545 @default.
- W4320857501 cites W2953396350 @default.
- W4320857501 cites W2957947877 @default.
- W4320857501 cites W2959113037 @default.
- W4320857501 cites W2968318837 @default.
- W4320857501 cites W2972588473 @default.
- W4320857501 cites W2972754417 @default.
- W4320857501 cites W3000396219 @default.
- W4320857501 cites W3001446745 @default.
- W4320857501 cites W3001669684 @default.
- W4320857501 cites W3002124680 @default.
- W4320857501 cites W3005090711 @default.
- W4320857501 cites W3006895533 @default.
- W4320857501 cites W3036298167 @default.
- W4320857501 cites W3045827876 @default.
- W4320857501 cites W3087496930 @default.
- W4320857501 cites W3120507271 @default.
- W4320857501 doi "https://doi.org/10.1371/journal.pone.0280670" @default.
- W4320857501 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36791068" @default.
- W4320857501 hasPublicationYear "2023" @default.
- W4320857501 type Work @default.
- W4320857501 citedByCount "2" @default.
- W4320857501 countsByYear W43208575012023 @default.
- W4320857501 crossrefType "journal-article" @default.
- W4320857501 hasAuthorship W4320857501A5008065839 @default.
- W4320857501 hasAuthorship W4320857501A5009132881 @default.
- W4320857501 hasAuthorship W4320857501A5027666165 @default.
- W4320857501 hasAuthorship W4320857501A5066481158 @default.
- W4320857501 hasAuthorship W4320857501A5071532116 @default.
- W4320857501 hasAuthorship W4320857501A5085275146 @default.
- W4320857501 hasBestOaLocation W43208575011 @default.
- W4320857501 hasConcept C11413529 @default.
- W4320857501 hasConcept C120665830 @default.
- W4320857501 hasConcept C121332964 @default.
- W4320857501 hasConcept C121608353 @default.
- W4320857501 hasConcept C126322002 @default.
- W4320857501 hasConcept C126838900 @default.
- W4320857501 hasConcept C142724271 @default.
- W4320857501 hasConcept C188816634 @default.
- W4320857501 hasConcept C2776135927 @default.
- W4320857501 hasConcept C2777789703 @default.
- W4320857501 hasConcept C40993552 @default.
- W4320857501 hasConcept C41008148 @default.
- W4320857501 hasConcept C512399662 @default.
- W4320857501 hasConcept C57742111 @default.
- W4320857501 hasConcept C61511704 @default.
- W4320857501 hasConcept C71924100 @default.
- W4320857501 hasConceptScore W4320857501C11413529 @default.
- W4320857501 hasConceptScore W4320857501C120665830 @default.
- W4320857501 hasConceptScore W4320857501C121332964 @default.
- W4320857501 hasConceptScore W4320857501C121608353 @default.
- W4320857501 hasConceptScore W4320857501C126322002 @default.
- W4320857501 hasConceptScore W4320857501C126838900 @default.
- W4320857501 hasConceptScore W4320857501C142724271 @default.
- W4320857501 hasConceptScore W4320857501C188816634 @default.
- W4320857501 hasConceptScore W4320857501C2776135927 @default.
- W4320857501 hasConceptScore W4320857501C2777789703 @default.
- W4320857501 hasConceptScore W4320857501C40993552 @default.