Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320857529> ?p ?o ?g. }
- W4320857529 endingPage "2732" @default.
- W4320857529 startingPage "2715" @default.
- W4320857529 abstract "Contouring error is one of the top failure modes in radiation treatment. Multiple efforts have been made to develop tools to automatically detect segmentation errors. Deep learning-based auto-segmentation (DLAS) has been used as a baseline for flagging manual segmentation errors, but those efforts are limited to using only one or two contour comparison metrics.The purpose of this research is to develop an improved contouring quality assurance system to identify and flag manual contouring errors.DLAS contours were used as a reference to compare with manually segmented contours. A total of 27 geometric agreement metrics were determined from the comparisons between the two segmentation approaches. Feature selection was performed to optimize the training of a machine learning classification model to identify potential contouring errors. A public dataset with 339 cases was used to train and test the classifier. Four independent classifiers were trained using five-fold cross validation, and the predictions from each classifier were ensembled using soft voting. The trained model was validated on a held-out testing dataset. An additional independent clinical dataset with 60 cases was used to test the generalizability of the model. Model predictions were reviewed by an expert to confirm or reject the findings.The proposed machine learning multiple features (ML-MF) approach outperformed traditional nonmachine-learning-based approaches that are based on only one or two geometric agreement metrics. The machine learning model achieved recall (precision) values of 0.842 (0.899), 0.762 (0.762), 0.727 (0.842), and 0.773 (0.773) for Brainstem, Parotid_L, Parotid_R, and mandible contours, respectively compared to 0.526 (0.909), 0.619 (0.765), 0.682 (0.882), 0.773 (0.568) for an approach based solely on Dice similarity coefficient values. In the external validation dataset, 66.7, 93.3, 94.1, and 58.8% of flagged cases were confirmed to have contouring errors by an expert for Brainstem, Parotid_L, Parotid_R, and mandible contours, respectively.The proposed ML-MF approach, which includes multiple geometric agreement metrics to flag manual contouring errors, demonstrated superior performance in comparison to traditional methods. This method is easy to implement in clinical practice and can help to reduce the significant time and labor costs associated with manual segmentation and review." @default.
- W4320857529 created "2023-02-16" @default.
- W4320857529 creator A5008353182 @default.
- W4320857529 creator A5008672848 @default.
- W4320857529 creator A5015978857 @default.
- W4320857529 creator A5040443483 @default.
- W4320857529 creator A5040543521 @default.
- W4320857529 creator A5048935442 @default.
- W4320857529 creator A5056393696 @default.
- W4320857529 date "2023-02-25" @default.
- W4320857529 modified "2023-10-14" @default.
- W4320857529 title "Contouring quality assurance methodology based on multiple geometric features against deep learning auto‐segmentation" @default.
- W4320857529 cites W1408981388 @default.
- W4320857529 cites W1494052777 @default.
- W4320857529 cites W1971326454 @default.
- W4320857529 cites W1995945562 @default.
- W4320857529 cites W1999705754 @default.
- W4320857529 cites W2012478287 @default.
- W4320857529 cites W2032060090 @default.
- W4320857529 cites W2038705219 @default.
- W4320857529 cites W2061246854 @default.
- W4320857529 cites W2071098381 @default.
- W4320857529 cites W2084413241 @default.
- W4320857529 cites W2095868657 @default.
- W4320857529 cites W2097360283 @default.
- W4320857529 cites W2101608218 @default.
- W4320857529 cites W2107595635 @default.
- W4320857529 cites W2112884386 @default.
- W4320857529 cites W2122825543 @default.
- W4320857529 cites W2127668516 @default.
- W4320857529 cites W2144562848 @default.
- W4320857529 cites W2146917638 @default.
- W4320857529 cites W2153654819 @default.
- W4320857529 cites W2159746573 @default.
- W4320857529 cites W2160754664 @default.
- W4320857529 cites W2166459387 @default.
- W4320857529 cites W2170505850 @default.
- W4320857529 cites W2174661749 @default.
- W4320857529 cites W2472443435 @default.
- W4320857529 cites W2580060826 @default.
- W4320857529 cites W2593013519 @default.
- W4320857529 cites W2596043126 @default.
- W4320857529 cites W2600642189 @default.
- W4320857529 cites W2608941499 @default.
- W4320857529 cites W2773960327 @default.
- W4320857529 cites W2789938347 @default.
- W4320857529 cites W2790417448 @default.
- W4320857529 cites W2791655860 @default.
- W4320857529 cites W2888538030 @default.
- W4320857529 cites W2920206089 @default.
- W4320857529 cites W2935744365 @default.
- W4320857529 cites W2954548739 @default.
- W4320857529 cites W2972534068 @default.
- W4320857529 cites W2986021933 @default.
- W4320857529 cites W298920164 @default.
- W4320857529 cites W3000931524 @default.
- W4320857529 cites W3009005803 @default.
- W4320857529 cites W3017404194 @default.
- W4320857529 cites W3027179809 @default.
- W4320857529 cites W3036562742 @default.
- W4320857529 cites W3039848812 @default.
- W4320857529 cites W3041894125 @default.
- W4320857529 cites W3045004532 @default.
- W4320857529 cites W3098165599 @default.
- W4320857529 cites W3119792495 @default.
- W4320857529 cites W3160604201 @default.
- W4320857529 cites W3174454785 @default.
- W4320857529 cites W3180629942 @default.
- W4320857529 cites W4205660560 @default.
- W4320857529 cites W4211210832 @default.
- W4320857529 cites W4239584046 @default.
- W4320857529 cites W4294541781 @default.
- W4320857529 doi "https://doi.org/10.1002/mp.16299" @default.
- W4320857529 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36788735" @default.
- W4320857529 hasPublicationYear "2023" @default.
- W4320857529 type Work @default.
- W4320857529 citedByCount "2" @default.
- W4320857529 countsByYear W43208575292023 @default.
- W4320857529 crossrefType "journal-article" @default.
- W4320857529 hasAuthorship W4320857529A5008353182 @default.
- W4320857529 hasAuthorship W4320857529A5008672848 @default.
- W4320857529 hasAuthorship W4320857529A5015978857 @default.
- W4320857529 hasAuthorship W4320857529A5040443483 @default.
- W4320857529 hasAuthorship W4320857529A5040543521 @default.
- W4320857529 hasAuthorship W4320857529A5048935442 @default.
- W4320857529 hasAuthorship W4320857529A5056393696 @default.
- W4320857529 hasBestOaLocation W43208575291 @default.
- W4320857529 hasConcept C105795698 @default.
- W4320857529 hasConcept C106436119 @default.
- W4320857529 hasConcept C108583219 @default.
- W4320857529 hasConcept C119857082 @default.
- W4320857529 hasConcept C121684516 @default.
- W4320857529 hasConcept C136264566 @default.
- W4320857529 hasConcept C153180895 @default.
- W4320857529 hasConcept C154945302 @default.
- W4320857529 hasConcept C162324750 @default.
- W4320857529 hasConcept C166957645 @default.
- W4320857529 hasConcept C27158222 @default.