Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320888921> ?p ?o ?g. }
- W4320888921 endingPage "101057" @default.
- W4320888921 startingPage "101057" @default.
- W4320888921 abstract "High-entropy materials provide a versatile platform for the rational design of novel candidates with exotic performances. Recently, it has been demonstrated that high-entropy ceramics (HECs), depending on their compositions, show great application potential because of their superior structural and functional properties. However, the immense phase space behind HECs significantly hinders the efficient design and exploitation of high-performance HECs through traditional trial-and-error experiments and expensive ab-initio calculations. Machine learning (ML), on the other hand, has become a popular approach to accelerate the discovery of HECs and screen HECs with exceptional properties. In this article, we review the recent progress of ML applications in discovering and designing novel HECs, including carbides, nitrides, borides, and oxides. We thoroughly discuss different ingredients that are involved in ML applications in HECs, including data collection, feature engineering, model refinement, and prediction performance improvement. We finally provide an outlook on the challenges and development directions of future ML models for HEC predictions." @default.
- W4320888921 created "2023-02-16" @default.
- W4320888921 creator A5003006169 @default.
- W4320888921 creator A5005585501 @default.
- W4320888921 creator A5010076333 @default.
- W4320888921 creator A5010212263 @default.
- W4320888921 creator A5040790581 @default.
- W4320888921 creator A5042857873 @default.
- W4320888921 creator A5049483817 @default.
- W4320888921 creator A5057249366 @default.
- W4320888921 creator A5063564807 @default.
- W4320888921 creator A5069513550 @default.
- W4320888921 creator A5091718689 @default.
- W4320888921 date "2023-04-01" @default.
- W4320888921 modified "2023-10-10" @default.
- W4320888921 title "Rational design of high-entropy ceramics based on machine learning – A critical review" @default.
- W4320888921 cites W1613484687 @default.
- W4320888921 cites W1965783559 @default.
- W4320888921 cites W1976492731 @default.
- W4320888921 cites W1990086882 @default.
- W4320888921 cites W1991258650 @default.
- W4320888921 cites W1992985800 @default.
- W4320888921 cites W2003975937 @default.
- W4320888921 cites W2007115257 @default.
- W4320888921 cites W2029515855 @default.
- W4320888921 cites W2054168515 @default.
- W4320888921 cites W2058085399 @default.
- W4320888921 cites W2068415766 @default.
- W4320888921 cites W2072024713 @default.
- W4320888921 cites W2084976307 @default.
- W4320888921 cites W2117363206 @default.
- W4320888921 cites W2261135145 @default.
- W4320888921 cites W2278970271 @default.
- W4320888921 cites W2334330944 @default.
- W4320888921 cites W2401730588 @default.
- W4320888921 cites W2534691303 @default.
- W4320888921 cites W2557627013 @default.
- W4320888921 cites W2623252583 @default.
- W4320888921 cites W2742127985 @default.
- W4320888921 cites W2766856748 @default.
- W4320888921 cites W2775708988 @default.
- W4320888921 cites W2792130717 @default.
- W4320888921 cites W2801835981 @default.
- W4320888921 cites W2802372049 @default.
- W4320888921 cites W2805506266 @default.
- W4320888921 cites W2886553304 @default.
- W4320888921 cites W2888579709 @default.
- W4320888921 cites W2890961624 @default.
- W4320888921 cites W2900696558 @default.
- W4320888921 cites W2907033740 @default.
- W4320888921 cites W2916338083 @default.
- W4320888921 cites W2921873493 @default.
- W4320888921 cites W2922127369 @default.
- W4320888921 cites W2929465105 @default.
- W4320888921 cites W2934954940 @default.
- W4320888921 cites W2945976633 @default.
- W4320888921 cites W2949095042 @default.
- W4320888921 cites W2951539866 @default.
- W4320888921 cites W2963238192 @default.
- W4320888921 cites W2963606102 @default.
- W4320888921 cites W2968923792 @default.
- W4320888921 cites W2974512415 @default.
- W4320888921 cites W2990048788 @default.
- W4320888921 cites W2991246762 @default.
- W4320888921 cites W2997541858 @default.
- W4320888921 cites W3006668250 @default.
- W4320888921 cites W3022628809 @default.
- W4320888921 cites W3022830821 @default.
- W4320888921 cites W3035450722 @default.
- W4320888921 cites W3037898147 @default.
- W4320888921 cites W3084128264 @default.
- W4320888921 cites W3092189307 @default.
- W4320888921 cites W3093999435 @default.
- W4320888921 cites W3094229170 @default.
- W4320888921 cites W3099430852 @default.
- W4320888921 cites W3100221827 @default.
- W4320888921 cites W3107591741 @default.
- W4320888921 cites W3108504761 @default.
- W4320888921 cites W3109004357 @default.
- W4320888921 cites W3115677442 @default.
- W4320888921 cites W3125722099 @default.
- W4320888921 cites W3127689772 @default.
- W4320888921 cites W3139066888 @default.
- W4320888921 cites W3155785330 @default.
- W4320888921 cites W3158083323 @default.
- W4320888921 cites W3162376383 @default.
- W4320888921 cites W3162899845 @default.
- W4320888921 cites W3163103290 @default.
- W4320888921 cites W3163857962 @default.
- W4320888921 cites W3172031522 @default.
- W4320888921 cites W3172610549 @default.
- W4320888921 cites W3173478819 @default.
- W4320888921 cites W3183767639 @default.
- W4320888921 cites W3189052210 @default.
- W4320888921 cites W3199242888 @default.
- W4320888921 cites W3200430486 @default.
- W4320888921 cites W3202919864 @default.
- W4320888921 cites W3203183117 @default.