Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320912367> ?p ?o ?g. }
- W4320912367 endingPage "100188" @default.
- W4320912367 startingPage "100188" @default.
- W4320912367 abstract "Although the practicability of using wavelet neural networks (WNNs) in nonlinear function approximation has been addressed extensively, selecting the optimal number of hidden nodes and their appropriate initial locations remains a great challenge for WNNs’ initialization. The cuckoo search algorithm (CSA) is used in this study for optimizing WNNs. The position of the cuckoo eggs represents the translation of the wavelet hidden nodes, which are optimized based on the egg-laying and breeding strategy of cuckoos. The solutions from the CSA are assigned as initial translation vectors for the WNNs and subsequently evaluated on a few benchmarking functions and real-world applications. Performance assessment demonstrates its superior approximation capability than the existing methods used for WNNs initialization." @default.
- W4320912367 created "2023-02-16" @default.
- W4320912367 creator A5068420615 @default.
- W4320912367 creator A5082925944 @default.
- W4320912367 date "2023-03-01" @default.
- W4320912367 modified "2023-09-25" @default.
- W4320912367 title "An optimized wavelet neural networks using cuckoo search algorithm for function approximation and chaotic time series prediction" @default.
- W4320912367 cites W1970190624 @default.
- W4320912367 cites W1976744965 @default.
- W4320912367 cites W1977978738 @default.
- W4320912367 cites W1981144549 @default.
- W4320912367 cites W1995669310 @default.
- W4320912367 cites W1996642839 @default.
- W4320912367 cites W2001112986 @default.
- W4320912367 cites W2005369724 @default.
- W4320912367 cites W2007141058 @default.
- W4320912367 cites W2007898191 @default.
- W4320912367 cites W2026876466 @default.
- W4320912367 cites W2027070192 @default.
- W4320912367 cites W2027147677 @default.
- W4320912367 cites W2032442032 @default.
- W4320912367 cites W2032825775 @default.
- W4320912367 cites W2039568841 @default.
- W4320912367 cites W2039911195 @default.
- W4320912367 cites W2041455747 @default.
- W4320912367 cites W2048449606 @default.
- W4320912367 cites W2055877700 @default.
- W4320912367 cites W2058819127 @default.
- W4320912367 cites W2070784118 @default.
- W4320912367 cites W2074293544 @default.
- W4320912367 cites W2074567950 @default.
- W4320912367 cites W2074668712 @default.
- W4320912367 cites W2075534745 @default.
- W4320912367 cites W2081090082 @default.
- W4320912367 cites W2091630872 @default.
- W4320912367 cites W2110371102 @default.
- W4320912367 cites W2126546663 @default.
- W4320912367 cites W2134620325 @default.
- W4320912367 cites W2150809741 @default.
- W4320912367 cites W2155183862 @default.
- W4320912367 cites W2266343688 @default.
- W4320912367 cites W2289257342 @default.
- W4320912367 cites W2293747114 @default.
- W4320912367 cites W2293958150 @default.
- W4320912367 cites W2295332895 @default.
- W4320912367 cites W2419283040 @default.
- W4320912367 cites W2460409812 @default.
- W4320912367 cites W2517600007 @default.
- W4320912367 cites W2522187260 @default.
- W4320912367 cites W2593992001 @default.
- W4320912367 cites W2766476556 @default.
- W4320912367 cites W2787893541 @default.
- W4320912367 cites W2791210778 @default.
- W4320912367 cites W2791624996 @default.
- W4320912367 cites W2796394805 @default.
- W4320912367 cites W2888547842 @default.
- W4320912367 cites W2918882650 @default.
- W4320912367 cites W2930688776 @default.
- W4320912367 cites W3013544975 @default.
- W4320912367 cites W3014974411 @default.
- W4320912367 cites W3021983759 @default.
- W4320912367 cites W3110065895 @default.
- W4320912367 cites W3134651880 @default.
- W4320912367 cites W3154719286 @default.
- W4320912367 cites W3169902780 @default.
- W4320912367 cites W3170992016 @default.
- W4320912367 cites W3216947774 @default.
- W4320912367 cites W341879454 @default.
- W4320912367 cites W4210918591 @default.
- W4320912367 cites W4223890494 @default.
- W4320912367 cites W4288459182 @default.
- W4320912367 cites W4294988642 @default.
- W4320912367 cites W4307725072 @default.
- W4320912367 cites W4307819885 @default.
- W4320912367 cites W4309683075 @default.
- W4320912367 cites W4309782718 @default.
- W4320912367 cites W603074074 @default.
- W4320912367 doi "https://doi.org/10.1016/j.dajour.2023.100188" @default.
- W4320912367 hasPublicationYear "2023" @default.
- W4320912367 type Work @default.
- W4320912367 citedByCount "1" @default.
- W4320912367 countsByYear W43209123672023 @default.
- W4320912367 crossrefType "journal-article" @default.
- W4320912367 hasAuthorship W4320912367A5068420615 @default.
- W4320912367 hasAuthorship W4320912367A5082925944 @default.
- W4320912367 hasBestOaLocation W43209123671 @default.
- W4320912367 hasConcept C10138342 @default.
- W4320912367 hasConcept C11413529 @default.
- W4320912367 hasConcept C114466953 @default.
- W4320912367 hasConcept C117241572 @default.
- W4320912367 hasConcept C126255220 @default.
- W4320912367 hasConcept C14036430 @default.
- W4320912367 hasConcept C143724316 @default.
- W4320912367 hasConcept C151730666 @default.
- W4320912367 hasConcept C154945302 @default.
- W4320912367 hasConcept C162324750 @default.
- W4320912367 hasConcept C198082294 @default.
- W4320912367 hasConcept C199360897 @default.