Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320912444> ?p ?o ?g. }
- W4320912444 endingPage "200197" @default.
- W4320912444 startingPage "200197" @default.
- W4320912444 abstract "Whether a new technology can spread smoothly in the market heavily depends on the user's acceptance of the technology. A considerable number of studies have sought to predict user acceptance intention through numerous methods. Most rely on the researcher's design and thus cannot present an optimized model that truly meets the research question. This study aims to provide a machine learning approach to predict the user's technology acceptance intention within the framework of robo-advisors. The new approach implements a predictive model from multiple machine learning algorithms such as regression tree, random forest, gradient boosting, and artificial neural network, and then compares the model with the traditional regression analysis methodology. All machine learning algorithms showed superior prediction performance than linear regression. Specifically, gradient boosting showed the best performance and perceived pleasure showed the greatest importance. This research ultimately provides theoretical implication regarding the perspective of acceptance prediction methodology and practical implication about which factors are crucial to acceptance of robo-advisors." @default.
- W4320912444 created "2023-02-16" @default.
- W4320912444 creator A5030041715 @default.
- W4320912444 creator A5040188814 @default.
- W4320912444 creator A5060663003 @default.
- W4320912444 creator A5081836490 @default.
- W4320912444 date "2023-05-01" @default.
- W4320912444 modified "2023-10-18" @default.
- W4320912444 title "Technology acceptance prediction of robo-advisors by machine learning" @default.
- W4320912444 cites W1519043595 @default.
- W4320912444 cites W1678356000 @default.
- W4320912444 cites W1791587663 @default.
- W4320912444 cites W1901616594 @default.
- W4320912444 cites W1965410815 @default.
- W4320912444 cites W1976396629 @default.
- W4320912444 cites W1977185509 @default.
- W4320912444 cites W1982210139 @default.
- W4320912444 cites W1988195734 @default.
- W4320912444 cites W1990919689 @default.
- W4320912444 cites W1995408540 @default.
- W4320912444 cites W1999162648 @default.
- W4320912444 cites W2008441192 @default.
- W4320912444 cites W2023228027 @default.
- W4320912444 cites W2035115911 @default.
- W4320912444 cites W2044317646 @default.
- W4320912444 cites W2050421060 @default.
- W4320912444 cites W2062723458 @default.
- W4320912444 cites W2063745966 @default.
- W4320912444 cites W2069954116 @default.
- W4320912444 cites W2072462334 @default.
- W4320912444 cites W2088794999 @default.
- W4320912444 cites W2095649738 @default.
- W4320912444 cites W2112759395 @default.
- W4320912444 cites W2126052291 @default.
- W4320912444 cites W2135617001 @default.
- W4320912444 cites W2140938420 @default.
- W4320912444 cites W2150376909 @default.
- W4320912444 cites W2216946510 @default.
- W4320912444 cites W2323525554 @default.
- W4320912444 cites W2610886376 @default.
- W4320912444 cites W2766015027 @default.
- W4320912444 cites W2779015686 @default.
- W4320912444 cites W2897120700 @default.
- W4320912444 cites W2904025145 @default.
- W4320912444 cites W2913322419 @default.
- W4320912444 cites W2954849019 @default.
- W4320912444 cites W2984427383 @default.
- W4320912444 cites W2987670788 @default.
- W4320912444 cites W3010301638 @default.
- W4320912444 cites W3025161810 @default.
- W4320912444 cites W3025835465 @default.
- W4320912444 cites W3084378266 @default.
- W4320912444 cites W3092728515 @default.
- W4320912444 cites W3106377951 @default.
- W4320912444 cites W3109226246 @default.
- W4320912444 cites W3118424533 @default.
- W4320912444 cites W3134427152 @default.
- W4320912444 cites W3156046057 @default.
- W4320912444 cites W3166357194 @default.
- W4320912444 cites W3170039947 @default.
- W4320912444 cites W3182263854 @default.
- W4320912444 cites W3189532265 @default.
- W4320912444 cites W3198350258 @default.
- W4320912444 cites W3198653517 @default.
- W4320912444 cites W3206921000 @default.
- W4320912444 cites W4220944089 @default.
- W4320912444 cites W4226257092 @default.
- W4320912444 cites W4290153693 @default.
- W4320912444 cites W4292336604 @default.
- W4320912444 doi "https://doi.org/10.1016/j.iswa.2023.200197" @default.
- W4320912444 hasPublicationYear "2023" @default.
- W4320912444 type Work @default.
- W4320912444 citedByCount "0" @default.
- W4320912444 crossrefType "journal-article" @default.
- W4320912444 hasAuthorship W4320912444A5030041715 @default.
- W4320912444 hasAuthorship W4320912444A5040188814 @default.
- W4320912444 hasAuthorship W4320912444A5060663003 @default.
- W4320912444 hasAuthorship W4320912444A5081836490 @default.
- W4320912444 hasBestOaLocation W43209124441 @default.
- W4320912444 hasConcept C105795698 @default.
- W4320912444 hasConcept C107457646 @default.
- W4320912444 hasConcept C119857082 @default.
- W4320912444 hasConcept C12713177 @default.
- W4320912444 hasConcept C154945302 @default.
- W4320912444 hasConcept C15744967 @default.
- W4320912444 hasConcept C169258074 @default.
- W4320912444 hasConcept C169760540 @default.
- W4320912444 hasConcept C170130773 @default.
- W4320912444 hasConcept C2776185967 @default.
- W4320912444 hasConcept C2777113389 @default.
- W4320912444 hasConcept C33923547 @default.
- W4320912444 hasConcept C41008148 @default.
- W4320912444 hasConcept C46686674 @default.
- W4320912444 hasConcept C50644808 @default.
- W4320912444 hasConcept C70153297 @default.
- W4320912444 hasConcept C83546350 @default.
- W4320912444 hasConcept C84525736 @default.
- W4320912444 hasConceptScore W4320912444C105795698 @default.