Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320912609> ?p ?o ?g. }
- W4320912609 endingPage "106081" @default.
- W4320912609 startingPage "106081" @default.
- W4320912609 abstract "A reversed bond-slip relationship that simultaneously considers key factors, such as the concrete cover, stirrups, fiber content, and lateral pressure is required to simulate the seismic response of reinforced concrete structures. In this study, the features of the hysteresis curves with different bond conditions and loading histories were discussed and analyzed, and a corresponding bond stress-slip model based on an ensemble learning (EL) algorithm, XGBoost, was then established. In this model, 10 key factors were selected as the input parameters and 4 reversed bond parameters were selected as the output results. During the training and testing process, a total of 901 sets of experimental data were collected and were randomly split into a training set and testing set at a ratio of 8:2. Compared with the empirical models and two other EL algorithms, the XGBoost method presented a high accuracy to predict the bond parameters with different bond conditions, and the proposed bond stress-slip model correlated well with the test results." @default.
- W4320912609 created "2023-02-16" @default.
- W4320912609 creator A5011927072 @default.
- W4320912609 creator A5016572507 @default.
- W4320912609 creator A5028125561 @default.
- W4320912609 creator A5048359100 @default.
- W4320912609 creator A5090580736 @default.
- W4320912609 date "2023-06-01" @default.
- W4320912609 modified "2023-09-27" @default.
- W4320912609 title "Reversed bond-slip model of deformed bar embedded in concrete based on ensemble learning algorithm" @default.
- W4320912609 cites W1534477342 @default.
- W4320912609 cites W1990475380 @default.
- W4320912609 cites W2005356342 @default.
- W4320912609 cites W2005587684 @default.
- W4320912609 cites W2012258576 @default.
- W4320912609 cites W2021844395 @default.
- W4320912609 cites W2075186762 @default.
- W4320912609 cites W2094100947 @default.
- W4320912609 cites W2096931670 @default.
- W4320912609 cites W2123994588 @default.
- W4320912609 cites W2125847845 @default.
- W4320912609 cites W2132925319 @default.
- W4320912609 cites W2140824033 @default.
- W4320912609 cites W2160398471 @default.
- W4320912609 cites W2216946510 @default.
- W4320912609 cites W2318503821 @default.
- W4320912609 cites W2602516395 @default.
- W4320912609 cites W2612011300 @default.
- W4320912609 cites W2792123899 @default.
- W4320912609 cites W2911964244 @default.
- W4320912609 cites W2962070721 @default.
- W4320912609 cites W2981111316 @default.
- W4320912609 cites W3010156620 @default.
- W4320912609 cites W3013729603 @default.
- W4320912609 cites W3045004532 @default.
- W4320912609 cites W3095595608 @default.
- W4320912609 cites W3123328636 @default.
- W4320912609 cites W3126729896 @default.
- W4320912609 cites W3128023441 @default.
- W4320912609 cites W3152908872 @default.
- W4320912609 cites W3164718919 @default.
- W4320912609 cites W3189394515 @default.
- W4320912609 cites W4200164956 @default.
- W4320912609 cites W4205955334 @default.
- W4320912609 cites W4206312740 @default.
- W4320912609 cites W4206373143 @default.
- W4320912609 cites W4207022764 @default.
- W4320912609 cites W4210543791 @default.
- W4320912609 cites W4220698020 @default.
- W4320912609 cites W4281785702 @default.
- W4320912609 cites W4285384616 @default.
- W4320912609 cites W4292260058 @default.
- W4320912609 cites W4302773726 @default.
- W4320912609 cites W4308310012 @default.
- W4320912609 cites W4309081327 @default.
- W4320912609 doi "https://doi.org/10.1016/j.jobe.2023.106081" @default.
- W4320912609 hasPublicationYear "2023" @default.
- W4320912609 type Work @default.
- W4320912609 citedByCount "0" @default.
- W4320912609 crossrefType "journal-article" @default.
- W4320912609 hasAuthorship W4320912609A5011927072 @default.
- W4320912609 hasAuthorship W4320912609A5016572507 @default.
- W4320912609 hasAuthorship W4320912609A5028125561 @default.
- W4320912609 hasAuthorship W4320912609A5048359100 @default.
- W4320912609 hasAuthorship W4320912609A5090580736 @default.
- W4320912609 hasConcept C10138342 @default.
- W4320912609 hasConcept C111368507 @default.
- W4320912609 hasConcept C11413529 @default.
- W4320912609 hasConcept C127313418 @default.
- W4320912609 hasConcept C127413603 @default.
- W4320912609 hasConcept C146978453 @default.
- W4320912609 hasConcept C162324750 @default.
- W4320912609 hasConcept C188721877 @default.
- W4320912609 hasConcept C192562407 @default.
- W4320912609 hasConcept C195268267 @default.
- W4320912609 hasConcept C41008148 @default.
- W4320912609 hasConcept C66938386 @default.
- W4320912609 hasConcept C69738904 @default.
- W4320912609 hasConceptScore W4320912609C10138342 @default.
- W4320912609 hasConceptScore W4320912609C111368507 @default.
- W4320912609 hasConceptScore W4320912609C11413529 @default.
- W4320912609 hasConceptScore W4320912609C127313418 @default.
- W4320912609 hasConceptScore W4320912609C127413603 @default.
- W4320912609 hasConceptScore W4320912609C146978453 @default.
- W4320912609 hasConceptScore W4320912609C162324750 @default.
- W4320912609 hasConceptScore W4320912609C188721877 @default.
- W4320912609 hasConceptScore W4320912609C192562407 @default.
- W4320912609 hasConceptScore W4320912609C195268267 @default.
- W4320912609 hasConceptScore W4320912609C41008148 @default.
- W4320912609 hasConceptScore W4320912609C66938386 @default.
- W4320912609 hasConceptScore W4320912609C69738904 @default.
- W4320912609 hasFunder F4320321001 @default.
- W4320912609 hasFunder F4320323172 @default.
- W4320912609 hasLocation W43209126091 @default.
- W4320912609 hasOpenAccess W4320912609 @default.
- W4320912609 hasPrimaryLocation W43209126091 @default.
- W4320912609 hasRelatedWork W1919224288 @default.
- W4320912609 hasRelatedWork W2027828455 @default.