Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320912897> ?p ?o ?g. }
- W4320912897 endingPage "581" @default.
- W4320912897 startingPage "562" @default.
- W4320912897 abstract "Group-sparse mode decomposition (GSMD) is a decomposition method designed based on the group sparse property of signals in frequency domain. It is proved to be highly efficient and robust against noise, showing bright prospects for bearing fault diagnosis. However, the following adverse factors may impede its application for incipient bearing fault feature extraction: Initially, the GSMD method did not consider the impulsiveness and periodicity of the bearing fault feature. As a result, the ideal filter bank generated by GSMD may not accurately cover the fault frequency band because it may produce over-coarse or over-narrow filter bank under the condition of strong interference harmonics, large random shocks and heavy noise. Moreover, the location of informative frequency band was obstructed since the bearing fault signal shows complicated distribution in frequency domain. To overcome the abovementioned limitations, an adaptive group sparse feature decomposition (AGSFD) method is proposed. Firstly, the harmonics, large-amplitude random shocks and periodic transient feature are modeled as limited bandwidth signals in the frequency domain. On this basis, an autocorrection of envelope derivation operator harmonic to noise ratio (AEDOHNR) indicator is proposed to guild the construction and optimization of the filter bank of AGSFD. Also, the regularization parameters of AGSFD are adaptively determined. With the optimized filter bank, the original bearing fault is decomposed into a serial of components with AGSFD method, where the sensitive fault-induced periodic transient component is maintained using the AEDOHNR indicator. Finally, the studies of the simulation and two experimental items are carried out to evaluate the feasibility and the superiority of AGSFD method. The results indicate the AGSFD method can identify the early failure in the presence of heavy noise, strong harmonics or random shocks and has better decomposition efficiency." @default.
- W4320912897 created "2023-02-16" @default.
- W4320912897 creator A5005201276 @default.
- W4320912897 creator A5007872320 @default.
- W4320912897 creator A5036807623 @default.
- W4320912897 creator A5046881277 @default.
- W4320912897 creator A5077289671 @default.
- W4320912897 creator A5090962798 @default.
- W4320912897 date "2023-07-01" @default.
- W4320912897 modified "2023-09-30" @default.
- W4320912897 title "An adaptive group sparse feature decomposition method in frequency domain for rolling bearing fault diagnosis" @default.
- W4320912897 cites W1411733351 @default.
- W4320912897 cites W1971521993 @default.
- W4320912897 cites W1984516393 @default.
- W4320912897 cites W2000982976 @default.
- W4320912897 cites W2004971874 @default.
- W4320912897 cites W2007221293 @default.
- W4320912897 cites W2019900743 @default.
- W4320912897 cites W2031454283 @default.
- W4320912897 cites W2053436766 @default.
- W4320912897 cites W2056700360 @default.
- W4320912897 cites W2277064738 @default.
- W4320912897 cites W2321462252 @default.
- W4320912897 cites W2405127965 @default.
- W4320912897 cites W2603478627 @default.
- W4320912897 cites W2767385682 @default.
- W4320912897 cites W2777002114 @default.
- W4320912897 cites W2781219304 @default.
- W4320912897 cites W2809815382 @default.
- W4320912897 cites W2884722635 @default.
- W4320912897 cites W2903052680 @default.
- W4320912897 cites W2904278575 @default.
- W4320912897 cites W2905281262 @default.
- W4320912897 cites W2914749581 @default.
- W4320912897 cites W2965813890 @default.
- W4320912897 cites W3039759439 @default.
- W4320912897 cites W3045363903 @default.
- W4320912897 cites W3049093724 @default.
- W4320912897 cites W3094224694 @default.
- W4320912897 cites W3155835896 @default.
- W4320912897 cites W3177031903 @default.
- W4320912897 cites W3178724529 @default.
- W4320912897 cites W3182422565 @default.
- W4320912897 cites W3194428826 @default.
- W4320912897 cites W3195802187 @default.
- W4320912897 cites W3197724308 @default.
- W4320912897 cites W4200311860 @default.
- W4320912897 cites W4200322140 @default.
- W4320912897 cites W4210353054 @default.
- W4320912897 cites W4210849528 @default.
- W4320912897 doi "https://doi.org/10.1016/j.isatra.2023.02.020" @default.
- W4320912897 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36863953" @default.
- W4320912897 hasPublicationYear "2023" @default.
- W4320912897 type Work @default.
- W4320912897 citedByCount "1" @default.
- W4320912897 countsByYear W43209128972023 @default.
- W4320912897 crossrefType "journal-article" @default.
- W4320912897 hasAuthorship W4320912897A5005201276 @default.
- W4320912897 hasAuthorship W4320912897A5007872320 @default.
- W4320912897 hasAuthorship W4320912897A5036807623 @default.
- W4320912897 hasAuthorship W4320912897A5046881277 @default.
- W4320912897 hasAuthorship W4320912897A5077289671 @default.
- W4320912897 hasAuthorship W4320912897A5090962798 @default.
- W4320912897 hasConcept C100515483 @default.
- W4320912897 hasConcept C106131492 @default.
- W4320912897 hasConcept C11413529 @default.
- W4320912897 hasConcept C127313418 @default.
- W4320912897 hasConcept C127413603 @default.
- W4320912897 hasConcept C153180895 @default.
- W4320912897 hasConcept C154945302 @default.
- W4320912897 hasConcept C165205528 @default.
- W4320912897 hasConcept C175551986 @default.
- W4320912897 hasConcept C19118579 @default.
- W4320912897 hasConcept C2775924081 @default.
- W4320912897 hasConcept C31972630 @default.
- W4320912897 hasConcept C41008148 @default.
- W4320912897 hasConcept C47446073 @default.
- W4320912897 hasConceptScore W4320912897C100515483 @default.
- W4320912897 hasConceptScore W4320912897C106131492 @default.
- W4320912897 hasConceptScore W4320912897C11413529 @default.
- W4320912897 hasConceptScore W4320912897C127313418 @default.
- W4320912897 hasConceptScore W4320912897C127413603 @default.
- W4320912897 hasConceptScore W4320912897C153180895 @default.
- W4320912897 hasConceptScore W4320912897C154945302 @default.
- W4320912897 hasConceptScore W4320912897C165205528 @default.
- W4320912897 hasConceptScore W4320912897C175551986 @default.
- W4320912897 hasConceptScore W4320912897C19118579 @default.
- W4320912897 hasConceptScore W4320912897C2775924081 @default.
- W4320912897 hasConceptScore W4320912897C31972630 @default.
- W4320912897 hasConceptScore W4320912897C41008148 @default.
- W4320912897 hasConceptScore W4320912897C47446073 @default.
- W4320912897 hasFunder F4320321001 @default.
- W4320912897 hasFunder F4320324805 @default.
- W4320912897 hasLocation W43209128971 @default.
- W4320912897 hasLocation W43209128972 @default.
- W4320912897 hasOpenAccess W4320912897 @default.
- W4320912897 hasPrimaryLocation W43209128971 @default.
- W4320912897 hasRelatedWork W1592917711 @default.