Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320913172> ?p ?o ?g. }
- W4320913172 endingPage "103784" @default.
- W4320913172 startingPage "103784" @default.
- W4320913172 abstract "Though deep learning-based methods have demonstrated strong capabilities on image fusion, they usually improve the fusion performance by increasing the width and depth of the network, increasing the computational effort and being unsuitable for industrial applications. In this paper, an end-to-end network based on fixed convolution module of discrete Chebyshev moments is proposed, which does not need any pre- or post-processing. The proposed network is roughly composed of three parts: feature extraction module, fusion module and feature reconstruction module. In the feature extraction module, a novel fixed convolution module based on discrete Chebyshev moments is proposed to obtain different frequency components in a short time. To improve the image sharpness and fuse more details, a spatial attention mechanism based on average gradient is proposed in fusion module. Extensive results demonstrate that the proposed network can achieve remarkable fusion performance, high time efficiency and strong generalization ability." @default.
- W4320913172 created "2023-02-16" @default.
- W4320913172 creator A5006139739 @default.
- W4320913172 creator A5014428274 @default.
- W4320913172 creator A5051362507 @default.
- W4320913172 creator A5072219013 @default.
- W4320913172 date "2023-04-01" @default.
- W4320913172 modified "2023-10-17" @default.
- W4320913172 title "Image fusion based on discrete Chebyshev moments" @default.
- W4320913172 cites W1628236353 @default.
- W4320913172 cites W1994714721 @default.
- W4320913172 cites W2091484864 @default.
- W4320913172 cites W2103440697 @default.
- W4320913172 cites W2116702374 @default.
- W4320913172 cites W2266694576 @default.
- W4320913172 cites W2306859282 @default.
- W4320913172 cites W2462409828 @default.
- W4320913172 cites W2523267570 @default.
- W4320913172 cites W2557682050 @default.
- W4320913172 cites W2559870345 @default.
- W4320913172 cites W2568435606 @default.
- W4320913172 cites W2734778698 @default.
- W4320913172 cites W2735436330 @default.
- W4320913172 cites W2767047606 @default.
- W4320913172 cites W2794731943 @default.
- W4320913172 cites W2886020162 @default.
- W4320913172 cites W2901100349 @default.
- W4320913172 cites W2914139557 @default.
- W4320913172 cites W2945454375 @default.
- W4320913172 cites W2963530785 @default.
- W4320913172 cites W2963787388 @default.
- W4320913172 cites W2998529071 @default.
- W4320913172 cites W3031714884 @default.
- W4320913172 cites W3102411220 @default.
- W4320913172 cites W3105639468 @default.
- W4320913172 cites W3110156142 @default.
- W4320913172 cites W3171889453 @default.
- W4320913172 cites W3203013933 @default.
- W4320913172 cites W3213472242 @default.
- W4320913172 cites W4226178544 @default.
- W4320913172 doi "https://doi.org/10.1016/j.jvcir.2023.103784" @default.
- W4320913172 hasPublicationYear "2023" @default.
- W4320913172 type Work @default.
- W4320913172 citedByCount "0" @default.
- W4320913172 crossrefType "journal-article" @default.
- W4320913172 hasAuthorship W4320913172A5006139739 @default.
- W4320913172 hasAuthorship W4320913172A5014428274 @default.
- W4320913172 hasAuthorship W4320913172A5051362507 @default.
- W4320913172 hasAuthorship W4320913172A5072219013 @default.
- W4320913172 hasConcept C110384440 @default.
- W4320913172 hasConcept C11413529 @default.
- W4320913172 hasConcept C115961682 @default.
- W4320913172 hasConcept C119599485 @default.
- W4320913172 hasConcept C127413603 @default.
- W4320913172 hasConcept C134306372 @default.
- W4320913172 hasConcept C138885662 @default.
- W4320913172 hasConcept C141353440 @default.
- W4320913172 hasConcept C153180895 @default.
- W4320913172 hasConcept C154945302 @default.
- W4320913172 hasConcept C158525013 @default.
- W4320913172 hasConcept C177148314 @default.
- W4320913172 hasConcept C21424316 @default.
- W4320913172 hasConcept C2776401178 @default.
- W4320913172 hasConcept C31972630 @default.
- W4320913172 hasConcept C33923547 @default.
- W4320913172 hasConcept C41008148 @default.
- W4320913172 hasConcept C41895202 @default.
- W4320913172 hasConcept C45347329 @default.
- W4320913172 hasConcept C50644808 @default.
- W4320913172 hasConcept C52622490 @default.
- W4320913172 hasConcept C69744172 @default.
- W4320913172 hasConceptScore W4320913172C110384440 @default.
- W4320913172 hasConceptScore W4320913172C11413529 @default.
- W4320913172 hasConceptScore W4320913172C115961682 @default.
- W4320913172 hasConceptScore W4320913172C119599485 @default.
- W4320913172 hasConceptScore W4320913172C127413603 @default.
- W4320913172 hasConceptScore W4320913172C134306372 @default.
- W4320913172 hasConceptScore W4320913172C138885662 @default.
- W4320913172 hasConceptScore W4320913172C141353440 @default.
- W4320913172 hasConceptScore W4320913172C153180895 @default.
- W4320913172 hasConceptScore W4320913172C154945302 @default.
- W4320913172 hasConceptScore W4320913172C158525013 @default.
- W4320913172 hasConceptScore W4320913172C177148314 @default.
- W4320913172 hasConceptScore W4320913172C21424316 @default.
- W4320913172 hasConceptScore W4320913172C2776401178 @default.
- W4320913172 hasConceptScore W4320913172C31972630 @default.
- W4320913172 hasConceptScore W4320913172C33923547 @default.
- W4320913172 hasConceptScore W4320913172C41008148 @default.
- W4320913172 hasConceptScore W4320913172C41895202 @default.
- W4320913172 hasConceptScore W4320913172C45347329 @default.
- W4320913172 hasConceptScore W4320913172C50644808 @default.
- W4320913172 hasConceptScore W4320913172C52622490 @default.
- W4320913172 hasConceptScore W4320913172C69744172 @default.
- W4320913172 hasFunder F4320321001 @default.
- W4320913172 hasFunder F4320328119 @default.
- W4320913172 hasFunder F4320335787 @default.
- W4320913172 hasLocation W43209131721 @default.
- W4320913172 hasOpenAccess W4320913172 @default.