Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320913262> ?p ?o ?g. }
- W4320913262 endingPage "133528" @default.
- W4320913262 startingPage "133528" @default.
- W4320913262 abstract "Based on the current concentration levels of gas components in the air, indoor air quality may be assessed. Gas information of mixed gas with various concentrations can be acquired and assessed using an electronic nose (E-nose). For mixed gas of varied concentrations, the E-nose's prediction accuracy using the conventional regression prediction algorithm is unsatisfactory. We propose a two-channel temporal convolutional network based on a model temporal convolutional network (TCN) suitable for time series processing that was utilized to increase the precision of the regression prediction of mixed gas concentration on the E-nose. In addition to improve the structure of the model, we also analyse its activation function. In the experiment, we use two types of gas mixture data with different concentrations, methane-ethylene and carbon monoxide(CO)-ethylene, in our experiments. It is compared with some baseline models including long short-term memory (LSTM), gated recurrent unit (GRU) and generic temporal convolutional network (TCN). In our experiments, we show that the two-channel TCN architecture is superior to both the models mentioned above and the generic TCN architecture." @default.
- W4320913262 created "2023-02-16" @default.
- W4320913262 creator A5002312509 @default.
- W4320913262 creator A5048354969 @default.
- W4320913262 creator A5049461935 @default.
- W4320913262 creator A5064752243 @default.
- W4320913262 creator A5087637729 @default.
- W4320913262 date "2023-05-01" @default.
- W4320913262 modified "2023-10-13" @default.
- W4320913262 title "A mixed gas concentration regression prediction method for electronic nose based on two-channel TCN" @default.
- W4320913262 cites W2005769924 @default.
- W4320913262 cites W2035729201 @default.
- W4320913262 cites W2043228294 @default.
- W4320913262 cites W2047410068 @default.
- W4320913262 cites W2049832930 @default.
- W4320913262 cites W2064675550 @default.
- W4320913262 cites W2165899560 @default.
- W4320913262 cites W2194775991 @default.
- W4320913262 cites W2572716498 @default.
- W4320913262 cites W2607040660 @default.
- W4320913262 cites W2608860327 @default.
- W4320913262 cites W2624085420 @default.
- W4320913262 cites W2773366138 @default.
- W4320913262 cites W2792712529 @default.
- W4320913262 cites W2963853051 @default.
- W4320913262 cites W2994803432 @default.
- W4320913262 cites W2997720362 @default.
- W4320913262 cites W3003466106 @default.
- W4320913262 cites W3006045905 @default.
- W4320913262 cites W3034277227 @default.
- W4320913262 cites W3035042697 @default.
- W4320913262 cites W3088516434 @default.
- W4320913262 cites W3095173048 @default.
- W4320913262 cites W3156845437 @default.
- W4320913262 cites W3183054723 @default.
- W4320913262 cites W3206760989 @default.
- W4320913262 cites W4205200661 @default.
- W4320913262 cites W4210629220 @default.
- W4320913262 cites W4213370289 @default.
- W4320913262 cites W4283788120 @default.
- W4320913262 doi "https://doi.org/10.1016/j.snb.2023.133528" @default.
- W4320913262 hasPublicationYear "2023" @default.
- W4320913262 type Work @default.
- W4320913262 citedByCount "6" @default.
- W4320913262 countsByYear W43209132622023 @default.
- W4320913262 crossrefType "journal-article" @default.
- W4320913262 hasAuthorship W4320913262A5002312509 @default.
- W4320913262 hasAuthorship W4320913262A5048354969 @default.
- W4320913262 hasAuthorship W4320913262A5049461935 @default.
- W4320913262 hasAuthorship W4320913262A5064752243 @default.
- W4320913262 hasAuthorship W4320913262A5087637729 @default.
- W4320913262 hasConcept C105795698 @default.
- W4320913262 hasConcept C11413529 @default.
- W4320913262 hasConcept C119857082 @default.
- W4320913262 hasConcept C127162648 @default.
- W4320913262 hasConcept C152877465 @default.
- W4320913262 hasConcept C153180895 @default.
- W4320913262 hasConcept C154945302 @default.
- W4320913262 hasConcept C161790260 @default.
- W4320913262 hasConcept C178790620 @default.
- W4320913262 hasConcept C185592680 @default.
- W4320913262 hasConcept C186060115 @default.
- W4320913262 hasConcept C23895516 @default.
- W4320913262 hasConcept C31258907 @default.
- W4320913262 hasConcept C33923547 @default.
- W4320913262 hasConcept C41008148 @default.
- W4320913262 hasConcept C512735826 @default.
- W4320913262 hasConcept C516920438 @default.
- W4320913262 hasConcept C55493867 @default.
- W4320913262 hasConcept C83546350 @default.
- W4320913262 hasConcept C86803240 @default.
- W4320913262 hasConceptScore W4320913262C105795698 @default.
- W4320913262 hasConceptScore W4320913262C11413529 @default.
- W4320913262 hasConceptScore W4320913262C119857082 @default.
- W4320913262 hasConceptScore W4320913262C127162648 @default.
- W4320913262 hasConceptScore W4320913262C152877465 @default.
- W4320913262 hasConceptScore W4320913262C153180895 @default.
- W4320913262 hasConceptScore W4320913262C154945302 @default.
- W4320913262 hasConceptScore W4320913262C161790260 @default.
- W4320913262 hasConceptScore W4320913262C178790620 @default.
- W4320913262 hasConceptScore W4320913262C185592680 @default.
- W4320913262 hasConceptScore W4320913262C186060115 @default.
- W4320913262 hasConceptScore W4320913262C23895516 @default.
- W4320913262 hasConceptScore W4320913262C31258907 @default.
- W4320913262 hasConceptScore W4320913262C33923547 @default.
- W4320913262 hasConceptScore W4320913262C41008148 @default.
- W4320913262 hasConceptScore W4320913262C512735826 @default.
- W4320913262 hasConceptScore W4320913262C516920438 @default.
- W4320913262 hasConceptScore W4320913262C55493867 @default.
- W4320913262 hasConceptScore W4320913262C83546350 @default.
- W4320913262 hasConceptScore W4320913262C86803240 @default.
- W4320913262 hasFunder F4320321001 @default.
- W4320913262 hasFunder F4320333335 @default.
- W4320913262 hasLocation W43209132621 @default.
- W4320913262 hasOpenAccess W4320913262 @default.
- W4320913262 hasPrimaryLocation W43209132621 @default.
- W4320913262 hasRelatedWork W2020799138 @default.
- W4320913262 hasRelatedWork W2076021630 @default.