Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320915502> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4320915502 endingPage "102" @default.
- W4320915502 startingPage "83" @default.
- W4320915502 abstract "One of the most important challenges in the field of software code audit is the presence of vulnerabilities in software source code. Every year, more and more software flaws are found, either internally in proprietary code or revealed publicly. These flaws are highly likely exploited and lead to system compromise, data leakage, or denial of service. C and C++ open-source codes are now available in order to create a large-scale, classical machine-learning and quantum machine-learning system for function-level vulnerability identification. We assembled a sizable dataset of millions of open-source functions that point to potential exploits. We created an efficient and scalable vulnerability detection method based on a deep neural network model– Long Short-Term Memory (LSTM), and quantum machine learning model– Long Short-Term Memory (QLSTM), that can learn features extracted from the source codes. The source code is first converted into a minimal intermediate representation to remove the pointless components and shorten the dependency. Previous studies lack analyzing features of the source code that causes models to recognize flaws in real-life examples. Therefore, We keep the semantic and syntactic information using state-of-the-art word embedding algorithms such as Glove and fastText. The embedded vectors are subsequently fed into the classical and quantum convolutional neural networks to classify the possible vulnerabilities. To measure the performance, we used evaluation metrics such as F1 score, precision, recall, accuracy, and total execution time. We made a comparison between the results derived from the classical LSTM and quantum LSTM using basic feature representation as well as semantic and syntactic representation. We found that the QLSTM with semantic and syntactic features detects significantly accurate vulnerability and runs faster than its classical counterpart." @default.
- W4320915502 created "2023-02-16" @default.
- W4320915502 creator A5015055011 @default.
- W4320915502 creator A5041277926 @default.
- W4320915502 creator A5052820694 @default.
- W4320915502 date "2023-01-01" @default.
- W4320915502 modified "2023-10-15" @default.
- W4320915502 title "Automated Vulnerability Detection in Source Code Using Quantum Natural Language Processing" @default.
- W4320915502 cites W1563577331 @default.
- W4320915502 cites W1596552075 @default.
- W4320915502 cites W2064675550 @default.
- W4320915502 cites W2077428231 @default.
- W4320915502 cites W2094908058 @default.
- W4320915502 cites W2114471683 @default.
- W4320915502 cites W2118020653 @default.
- W4320915502 cites W2148357053 @default.
- W4320915502 cites W2204328893 @default.
- W4320915502 cites W2250539671 @default.
- W4320915502 cites W2360967250 @default.
- W4320915502 cites W2489292218 @default.
- W4320915502 cites W2535617737 @default.
- W4320915502 cites W2593936952 @default.
- W4320915502 cites W2598671086 @default.
- W4320915502 cites W2634106992 @default.
- W4320915502 cites W2755255888 @default.
- W4320915502 cites W2790388700 @default.
- W4320915502 cites W2797279162 @default.
- W4320915502 cites W2798434869 @default.
- W4320915502 cites W2798967590 @default.
- W4320915502 cites W2911423727 @default.
- W4320915502 cites W2962960733 @default.
- W4320915502 cites W2969915736 @default.
- W4320915502 cites W2991427338 @default.
- W4320915502 cites W2995742898 @default.
- W4320915502 cites W3003955902 @default.
- W4320915502 cites W3045093737 @default.
- W4320915502 cites W3082455048 @default.
- W4320915502 cites W3097867666 @default.
- W4320915502 cites W3101427288 @default.
- W4320915502 cites W3104599990 @default.
- W4320915502 cites W3108410642 @default.
- W4320915502 cites W3117786276 @default.
- W4320915502 cites W3129043469 @default.
- W4320915502 cites W4200237812 @default.
- W4320915502 cites W4210475786 @default.
- W4320915502 cites W4299363674 @default.
- W4320915502 doi "https://doi.org/10.1007/978-981-99-0272-9_6" @default.
- W4320915502 hasPublicationYear "2023" @default.
- W4320915502 type Work @default.
- W4320915502 citedByCount "4" @default.
- W4320915502 countsByYear W43209155022023 @default.
- W4320915502 crossrefType "book-chapter" @default.
- W4320915502 hasAuthorship W4320915502A5015055011 @default.
- W4320915502 hasAuthorship W4320915502A5041277926 @default.
- W4320915502 hasAuthorship W4320915502A5052820694 @default.
- W4320915502 hasBestOaLocation W43209155022 @default.
- W4320915502 hasConcept C111919701 @default.
- W4320915502 hasConcept C119857082 @default.
- W4320915502 hasConcept C154945302 @default.
- W4320915502 hasConcept C199360897 @default.
- W4320915502 hasConcept C204321447 @default.
- W4320915502 hasConcept C41008148 @default.
- W4320915502 hasConcept C43126263 @default.
- W4320915502 hasConcept C48044578 @default.
- W4320915502 hasConcept C80444323 @default.
- W4320915502 hasConcept C81363708 @default.
- W4320915502 hasConceptScore W4320915502C111919701 @default.
- W4320915502 hasConceptScore W4320915502C119857082 @default.
- W4320915502 hasConceptScore W4320915502C154945302 @default.
- W4320915502 hasConceptScore W4320915502C199360897 @default.
- W4320915502 hasConceptScore W4320915502C204321447 @default.
- W4320915502 hasConceptScore W4320915502C41008148 @default.
- W4320915502 hasConceptScore W4320915502C43126263 @default.
- W4320915502 hasConceptScore W4320915502C48044578 @default.
- W4320915502 hasConceptScore W4320915502C80444323 @default.
- W4320915502 hasConceptScore W4320915502C81363708 @default.
- W4320915502 hasLocation W43209155021 @default.
- W4320915502 hasLocation W43209155022 @default.
- W4320915502 hasOpenAccess W4320915502 @default.
- W4320915502 hasPrimaryLocation W43209155021 @default.
- W4320915502 hasRelatedWork W1838576100 @default.
- W4320915502 hasRelatedWork W1983399550 @default.
- W4320915502 hasRelatedWork W2089704382 @default.
- W4320915502 hasRelatedWork W2095886385 @default.
- W4320915502 hasRelatedWork W2357523926 @default.
- W4320915502 hasRelatedWork W2389214306 @default.
- W4320915502 hasRelatedWork W2965083567 @default.
- W4320915502 hasRelatedWork W4235240664 @default.
- W4320915502 hasRelatedWork W4293226380 @default.
- W4320915502 hasRelatedWork W97075385 @default.
- W4320915502 isParatext "false" @default.
- W4320915502 isRetracted "false" @default.
- W4320915502 workType "book-chapter" @default.