Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320915554> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4320915554 abstract "Solar energetic particles (SEPs) represent one of the most hazardous events in space weather. In the last decades, a great variety of techniques have been developed for the prediction of SEP occurrence, mainly based on the statistical association between the $>$10 MeV proton flux and some precursors (e.g., solar flares, coronal mass ejections, etc.). In this paper we focus on the Empirical model for Solar Proton Event Real Time Alert (ESPERTA), a model which makes a prediction for an SEP event after the occurrence of a $geq$M2 solar flare by considering three input parameters: the flare source region longitude, the soft X-ray fluence and the radio fluence at $sim$1 MHz. Here, we recast the ESPERTA model in the supervised learning framework and we perform the cross validation of the predictive model also applying rare event corrections (i.e., data oversampling and loss function weighting) because of the highly unbalanced nature of the SEP occurrence. The best performances are obtained by using the Synthetic Minority Oversampling Technique, leading to a probability of detection of 0.83 and a false alarm rate (FAR) of 0.39. Nevertheless, the improvement of the validation scores with respect to the unbalanced case is small. A relevant FAR on the SEP prediction comes as a natural consequence of the sample base rates. In summary we give evidence that the statistical approach to the forecasting of SEP events should take into account the following considerations: 1) the model need to be calibrated with respect to the expected occurrence of SEP events, 2) the decision threshold strongly affects model performance and 3) the features used in the model, when taken individually, are unable to fully separate the classes of events in the parameter space, thus the use of techniques for handling unbalanced problems does not guarantee a better performance." @default.
- W4320915554 created "2023-02-16" @default.
- W4320915554 creator A5009819905 @default.
- W4320915554 creator A5016158869 @default.
- W4320915554 creator A5020324304 @default.
- W4320915554 creator A5039065155 @default.
- W4320915554 creator A5039832110 @default.
- W4320915554 creator A5076228162 @default.
- W4320915554 date "2023-02-15" @default.
- W4320915554 modified "2023-10-01" @default.
- W4320915554 title "Statistical treatment of solar energetic particle forecasting through supervised learning approaches" @default.
- W4320915554 doi "https://doi.org/10.22323/1.423.0014" @default.
- W4320915554 hasPublicationYear "2023" @default.
- W4320915554 type Work @default.
- W4320915554 citedByCount "0" @default.
- W4320915554 crossrefType "proceedings-article" @default.
- W4320915554 hasAuthorship W4320915554A5009819905 @default.
- W4320915554 hasAuthorship W4320915554A5016158869 @default.
- W4320915554 hasAuthorship W4320915554A5020324304 @default.
- W4320915554 hasAuthorship W4320915554A5039065155 @default.
- W4320915554 hasAuthorship W4320915554A5039832110 @default.
- W4320915554 hasAuthorship W4320915554A5076228162 @default.
- W4320915554 hasBestOaLocation W43209155541 @default.
- W4320915554 hasConcept C108411613 @default.
- W4320915554 hasConcept C115260700 @default.
- W4320915554 hasConcept C121332964 @default.
- W4320915554 hasConcept C13019657 @default.
- W4320915554 hasConcept C151325931 @default.
- W4320915554 hasConcept C153294291 @default.
- W4320915554 hasConcept C183115368 @default.
- W4320915554 hasConcept C185001636 @default.
- W4320915554 hasConcept C24890656 @default.
- W4320915554 hasConcept C2779588948 @default.
- W4320915554 hasConcept C2779662365 @default.
- W4320915554 hasConcept C41008148 @default.
- W4320915554 hasConcept C44870925 @default.
- W4320915554 hasConcept C62520636 @default.
- W4320915554 hasConcept C72886185 @default.
- W4320915554 hasConceptScore W4320915554C108411613 @default.
- W4320915554 hasConceptScore W4320915554C115260700 @default.
- W4320915554 hasConceptScore W4320915554C121332964 @default.
- W4320915554 hasConceptScore W4320915554C13019657 @default.
- W4320915554 hasConceptScore W4320915554C151325931 @default.
- W4320915554 hasConceptScore W4320915554C153294291 @default.
- W4320915554 hasConceptScore W4320915554C183115368 @default.
- W4320915554 hasConceptScore W4320915554C185001636 @default.
- W4320915554 hasConceptScore W4320915554C24890656 @default.
- W4320915554 hasConceptScore W4320915554C2779588948 @default.
- W4320915554 hasConceptScore W4320915554C2779662365 @default.
- W4320915554 hasConceptScore W4320915554C41008148 @default.
- W4320915554 hasConceptScore W4320915554C44870925 @default.
- W4320915554 hasConceptScore W4320915554C62520636 @default.
- W4320915554 hasConceptScore W4320915554C72886185 @default.
- W4320915554 hasLocation W43209155541 @default.
- W4320915554 hasOpenAccess W4320915554 @default.
- W4320915554 hasPrimaryLocation W43209155541 @default.
- W4320915554 hasRelatedWork W120541978 @default.
- W4320915554 hasRelatedWork W1588692595 @default.
- W4320915554 hasRelatedWork W2147132135 @default.
- W4320915554 hasRelatedWork W2888603295 @default.
- W4320915554 hasRelatedWork W2938720991 @default.
- W4320915554 hasRelatedWork W4206542082 @default.
- W4320915554 hasRelatedWork W4283584568 @default.
- W4320915554 hasRelatedWork W4323321743 @default.
- W4320915554 hasRelatedWork W837966343 @default.
- W4320915554 hasRelatedWork W848853926 @default.
- W4320915554 isParatext "false" @default.
- W4320915554 isRetracted "false" @default.
- W4320915554 workType "article" @default.