Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320915816> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4320915816 endingPage "012059" @default.
- W4320915816 startingPage "012059" @default.
- W4320915816 abstract "Abstract The Worldwide LHC Computing Grid (WLCG) is the infrastructure enabling the storage and processing of the large amount of data generated by the LHC experiments, and in particular the ALICE experiment. With the foreseen increase in the computing requirements of the future High Luminosity LHC experiments, a data placement strategy which increases the efficiency of the WLCG computing infrastructure becomes extremely relevant for the scientific success of the LHC scientific programme. Currently, the data placement at the ALICE Grid computing sites is determined by heuristic algorithms. Optimisation of the data storage could yield substantial benefits in terms of efficiency and time-to-result. This has however proven to be arduous due to the complexity of the problem. In this work we propose a modelisation of the behaviour of the system via principal component analysis, time series analysis and deep learning, starting from the detailed data collected by the MonALISA monitoring system. We show that it is possible to analyse and model the throughput of the ALICE Grid to a level that has not been possible before, comparing the performance of different deep learning architectures based on recurrent neural networks. Analyzing about six weeks of activity, the Grid I/O throughput trend is successfully predicted with a mean relative error of 4%, while the prediction of the throughput itself performs at 5%." @default.
- W4320915816 created "2023-02-16" @default.
- W4320915816 creator A5001923006 @default.
- W4320915816 creator A5045074409 @default.
- W4320915816 creator A5063367647 @default.
- W4320915816 date "2023-02-01" @default.
- W4320915816 modified "2023-09-25" @default.
- W4320915816 title "Predicting ALICE Grid throughput using recurrent neural networks" @default.
- W4320915816 cites W1985987433 @default.
- W4320915816 cites W2017593237 @default.
- W4320915816 doi "https://doi.org/10.1088/1742-6596/2438/1/012059" @default.
- W4320915816 hasPublicationYear "2023" @default.
- W4320915816 type Work @default.
- W4320915816 citedByCount "0" @default.
- W4320915816 crossrefType "journal-article" @default.
- W4320915816 hasAuthorship W4320915816A5001923006 @default.
- W4320915816 hasAuthorship W4320915816A5045074409 @default.
- W4320915816 hasAuthorship W4320915816A5063367647 @default.
- W4320915816 hasBestOaLocation W43209158161 @default.
- W4320915816 hasConcept C109214941 @default.
- W4320915816 hasConcept C111919701 @default.
- W4320915816 hasConcept C121332964 @default.
- W4320915816 hasConcept C124101348 @default.
- W4320915816 hasConcept C13600138 @default.
- W4320915816 hasConcept C154945302 @default.
- W4320915816 hasConcept C157764524 @default.
- W4320915816 hasConcept C173801870 @default.
- W4320915816 hasConcept C187691185 @default.
- W4320915816 hasConcept C199360897 @default.
- W4320915816 hasConcept C2524010 @default.
- W4320915816 hasConcept C2778222013 @default.
- W4320915816 hasConcept C33923547 @default.
- W4320915816 hasConcept C41008148 @default.
- W4320915816 hasConcept C50644808 @default.
- W4320915816 hasConcept C555944384 @default.
- W4320915816 hasConcept C70429105 @default.
- W4320915816 hasConcept C75684735 @default.
- W4320915816 hasConcept C87668248 @default.
- W4320915816 hasConceptScore W4320915816C109214941 @default.
- W4320915816 hasConceptScore W4320915816C111919701 @default.
- W4320915816 hasConceptScore W4320915816C121332964 @default.
- W4320915816 hasConceptScore W4320915816C124101348 @default.
- W4320915816 hasConceptScore W4320915816C13600138 @default.
- W4320915816 hasConceptScore W4320915816C154945302 @default.
- W4320915816 hasConceptScore W4320915816C157764524 @default.
- W4320915816 hasConceptScore W4320915816C173801870 @default.
- W4320915816 hasConceptScore W4320915816C187691185 @default.
- W4320915816 hasConceptScore W4320915816C199360897 @default.
- W4320915816 hasConceptScore W4320915816C2524010 @default.
- W4320915816 hasConceptScore W4320915816C2778222013 @default.
- W4320915816 hasConceptScore W4320915816C33923547 @default.
- W4320915816 hasConceptScore W4320915816C41008148 @default.
- W4320915816 hasConceptScore W4320915816C50644808 @default.
- W4320915816 hasConceptScore W4320915816C555944384 @default.
- W4320915816 hasConceptScore W4320915816C70429105 @default.
- W4320915816 hasConceptScore W4320915816C75684735 @default.
- W4320915816 hasConceptScore W4320915816C87668248 @default.
- W4320915816 hasIssue "1" @default.
- W4320915816 hasLocation W43209158161 @default.
- W4320915816 hasOpenAccess W4320915816 @default.
- W4320915816 hasPrimaryLocation W43209158161 @default.
- W4320915816 hasRelatedWork W1643636190 @default.
- W4320915816 hasRelatedWork W1812982339 @default.
- W4320915816 hasRelatedWork W1974041706 @default.
- W4320915816 hasRelatedWork W2010744800 @default.
- W4320915816 hasRelatedWork W2091486429 @default.
- W4320915816 hasRelatedWork W2125132745 @default.
- W4320915816 hasRelatedWork W2132886039 @default.
- W4320915816 hasRelatedWork W2352349437 @default.
- W4320915816 hasRelatedWork W3198077945 @default.
- W4320915816 hasRelatedWork W1964202510 @default.
- W4320915816 hasVolume "2438" @default.
- W4320915816 isParatext "false" @default.
- W4320915816 isRetracted "false" @default.
- W4320915816 workType "article" @default.