Matches in SemOpenAlex for { <https://semopenalex.org/work/W4320917360> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4320917360 endingPage "012004" @default.
- W4320917360 startingPage "012004" @default.
- W4320917360 abstract "Abstract Over the next years, measurements at the LHC and the HL-LHC will provide us with a wealth of new data. The best hope to answer fundamental questions, like the nature of dark matter, is to adopt big data techniques in simulations and analyses to extract all relevant information. On the theory side, LHC physics crucially relies on our ability to simulate events efficiently from first principles. These simulations will face unprecedented precision requirements to match the experimental accuracy. Innovative ML techniques like generative networks can help us overcome limitations from the high dimensionality of the phase space. Such networks can be employed within established simulation tools or as part of a new framework. Since neural networks can be inverted, they open new avenues in LHC analyses." @default.
- W4320917360 created "2023-02-16" @default.
- W4320917360 creator A5076449537 @default.
- W4320917360 date "2023-02-01" @default.
- W4320917360 modified "2023-09-26" @default.
- W4320917360 title "Normalizing Flows for LHC Theory" @default.
- W4320917360 cites W2775970449 @default.
- W4320917360 cites W2956718876 @default.
- W4320917360 cites W3000095629 @default.
- W4320917360 cites W3013695373 @default.
- W4320917360 cites W3043207537 @default.
- W4320917360 cites W3098353287 @default.
- W4320917360 cites W3099140308 @default.
- W4320917360 cites W3100583308 @default.
- W4320917360 cites W3101355774 @default.
- W4320917360 cites W3102333781 @default.
- W4320917360 cites W3105880542 @default.
- W4320917360 cites W3126152931 @default.
- W4320917360 cites W3129193197 @default.
- W4320917360 cites W3158703662 @default.
- W4320917360 cites W3160485103 @default.
- W4320917360 cites W3170550558 @default.
- W4320917360 cites W3171983145 @default.
- W4320917360 cites W3209805042 @default.
- W4320917360 cites W3212559887 @default.
- W4320917360 doi "https://doi.org/10.1088/1742-6596/2438/1/012004" @default.
- W4320917360 hasPublicationYear "2023" @default.
- W4320917360 type Work @default.
- W4320917360 citedByCount "0" @default.
- W4320917360 crossrefType "journal-article" @default.
- W4320917360 hasAuthorship W4320917360A5076449537 @default.
- W4320917360 hasBestOaLocation W43209173601 @default.
- W4320917360 hasConcept C109214941 @default.
- W4320917360 hasConcept C111030470 @default.
- W4320917360 hasConcept C121332964 @default.
- W4320917360 hasConcept C151342819 @default.
- W4320917360 hasConcept C154945302 @default.
- W4320917360 hasConcept C2522767166 @default.
- W4320917360 hasConcept C41008148 @default.
- W4320917360 hasConcept C87668248 @default.
- W4320917360 hasConcept C97355855 @default.
- W4320917360 hasConceptScore W4320917360C109214941 @default.
- W4320917360 hasConceptScore W4320917360C111030470 @default.
- W4320917360 hasConceptScore W4320917360C121332964 @default.
- W4320917360 hasConceptScore W4320917360C151342819 @default.
- W4320917360 hasConceptScore W4320917360C154945302 @default.
- W4320917360 hasConceptScore W4320917360C2522767166 @default.
- W4320917360 hasConceptScore W4320917360C41008148 @default.
- W4320917360 hasConceptScore W4320917360C87668248 @default.
- W4320917360 hasConceptScore W4320917360C97355855 @default.
- W4320917360 hasIssue "1" @default.
- W4320917360 hasLocation W43209173601 @default.
- W4320917360 hasOpenAccess W4320917360 @default.
- W4320917360 hasPrimaryLocation W43209173601 @default.
- W4320917360 hasRelatedWork W1516613174 @default.
- W4320917360 hasRelatedWork W1972772291 @default.
- W4320917360 hasRelatedWork W2003630967 @default.
- W4320917360 hasRelatedWork W2044639318 @default.
- W4320917360 hasRelatedWork W2159163522 @default.
- W4320917360 hasRelatedWork W2748952813 @default.
- W4320917360 hasRelatedWork W2904009833 @default.
- W4320917360 hasRelatedWork W3025728177 @default.
- W4320917360 hasRelatedWork W3100656241 @default.
- W4320917360 hasRelatedWork W2030560169 @default.
- W4320917360 hasVolume "2438" @default.
- W4320917360 isParatext "false" @default.
- W4320917360 isRetracted "false" @default.
- W4320917360 workType "article" @default.